1 引言 Pandas是作为Python数据分析著名的工具包,提供了多种数据选取的方法,方便实用.本文主要介绍Pandas的几种数据选取的方法. Pandas中,数据主要保存为Dataframe和Series是数据结构,这两种数据结构数据选取的方式基本一致,本文主要以Dataframe为例进行介绍. 在Dataframe中选取数据大抵包括3中情况: 1)行(列)选取(单维度选取):df[].这种情况一次只能选取行或者列,即一次选取中,只能为行或者列设置筛选条件(只能为一个维度设置筛选条件). 2…
导入CSV文件数据 环境 C:\Users\Thinkpad\Desktop\Data\信息表.csv 语法 pd.read_csv(filename):从CSV文件导入数据 实现代码 import pandas as pd f = open("C:/Users/Thinkpad/Desktop/Data/信息表.csv",encoding="utf-8") content = pd.read_csv(f) print(content) 运行结果 导入Excle文件…
1引言 本文总结Pandas中两种常用的数据类型: (1)Series是一种一维的带标签数组对象. (2)DataFrame,二维,Series容器 2 Series数组 2.1 Series数组构成 Series数组对象由两部分构成: 值(value):一维数组的各元素值,是一个ndarray类型数据. 索引(index):与一维数组值一一对应的标签.利用索引,我们可非常方便得在Series数组中进行取值. 如下所示,我们通过字典创建了一个Series数组,输出结果的第一列就是索引,第二列就是…
Python数据分析库pandas基本操作2017年02月20日 17:09:06 birdlove1987 阅读数:22631 标签: python 数据分析 pandas 更多 个人分类: Python第三方库 所属专栏: python第三方库 pandas是什么? 是它吗?....很显然pandas没有这个家伙那么可爱....我们来看看pandas的官网是怎么来定义自己的:pandas is an open source, easy-to-use data structures and d…
Python 数据分析:Pandas 缺省值的判断 背景 我们从数据库中取出数据存入 Pandas None 转换成 NaN 或 NaT.但是,我们将 Pandas 数据写入数据库时又需要转换成 None,不然就会报错.因此,我们就需要处理 Pandas 的缺省值. 样本数据 id name password sn sex age amount content remark login_date login_at created_at 0 1 123456789.0 NaN NaN NaN 20…
1 引言 数据分析.数据挖掘.可视化是Python的众多强项之一,但无论是这几项中的哪一项都必须以数据作为基础,数据通常都存储在外部文件中,例如txt.csv.excel.数据库.本篇中,我们来捋一捋Python中那些外部数据文件读取.写入的常用方法. 下表是Pandas官方手册上给出的一张表格,表格描述的是Pandas中对各种数据文件类型的读.写函数,你可以直接在官方手册中找到: Format Type Data Description Reader Writer text CSV read_…
从头到尾都是手码的,文中的所有示例也都是在Pycharm中运行过的,自己整理笔记的最大好处在于可以按照自己的思路来构建矿建,等到将来在需要的时候能够以最快的速度看懂并应用=_= 注:为方便表述,本章设s为pandas.core.series.Series的一个实例化对象,设df为pandas.core.frame.DataFrame的一个实例化对象 1. Pandas简介 Pandas是基于NumPy的python数据分析库,最初被作为金融数据分析工具而开发出来,因此Pandas为时间序列分析提…
Python中的pandas模块进行数据分析. 接下来pandas介绍中将学习到如下8块内容:1.数据结构简介:DataFrame和Series2.数据索引index3.利用pandas查询数据4.利用pandas的DataFrames进行统计分析5.利用pandas实现SQL操作6.利用pandas进行缺失值的处理7.利用pandas实现Excel的数据透视表功能8.多层索引的使用 一.数据结构介绍 在pandas中有两类非常重要的数据结构,即序列Series和数据框DataFrame.Ser…
Python中的pandas模块进行数据分析. 接下来pandas介绍中将学习到如下8块内容:1.数据结构简介:DataFrame和Series2.数据索引index3.利用pandas查询数据4.利用pandas的DataFrames进行统计分析5.利用pandas实现SQL操作6.利用pandas进行缺失值的处理7.利用pandas实现Excel的数据透视表功能8.多层索引的使用 一.数据结构介绍 在pandas中有两类非常重要的数据结构,即序列Series和数据框DataFrame.Ser…
首先要给那些不熟悉 Pandas 的人简单介绍一下,Pandas 是 Python 生态系统中最流行的数据分析库.它能够完成许多任务,包括: 读/写不同格式的数据 选择数据的子集 跨行/列计算 寻找并填写缺失的数据 在数据的独立组中应用操作 重塑数据成不同格式 合并多个数据集 先进的时序功能 通过 matplotlib 和 seaborn 进行可视化操作 尽管 Pandas 功能强大,但它并不为整个数据科学流程提供完整功能.Pandas 通常是被用在数据采集和存储以及数据建模和预测中间的工具,作…
1.获取行或列数据 loc——通过行标签索引行数据 iloc——通过行号索引行数据 ix——通过行标签或者行号索引行数据(基于loc和iloc 的混合) 同理,索引列数据也是如此! import pandas as pd data=[[1,2,3],[4,5,6],[7,8,9]] index=['a','b','c']#行号 columns=['d','e','f']#列号 df=pd.DataFrame(data,index=index,columns=columns)#生成一个数据框 输出…
pandas是python下强大的数据分析和探索工具,是的python在处理数据时非常快速.简单.它是构建在numpy之上的,包含丰富的数据处理函数,支持时间序列分析功能,支持灵活处理缺失数据. pandas基础 # 安装 pip install pandas pandas 基本的数据结构是 Series 和 DataFrame .Series 就是序列,类似一维数组:DataFrame 则是相当于一张二维的表格,类似二维数组,它的每一列都是一个 Series .每个 Series 都会带有一个…
pandas 是数据分析时必须用到的一个库,功能非常强大 其有两种数据结构:一维Series   二维表DataFrame(一般读取后的数据都是df) 导入:import pandas as pd 数据读取:pd.read_csv('d:/a.csv',dtype=objec,encoding='utf-8') pd.read_csv('d:/a.txt',dtype=objec,encoding='utf-8') pd.read_excel('d:/a.xls',dtype=objec,enc…
本节介绍Series和DataFrame中的数据的基本手段 重新索引 pandas对象的一个重要方法就是reindex,作用是创建一个适应新索引的新对象 ''' Created on 2016-8-10 @author: xuzhengzhu ''' ''' Created on 2016-8-10 @author: xuzhengzhu ''' from pandas import * print "--------------obj result:-----------------"…
一.pandas库简介 pandas是一个专门用于数据分析的开源Python库,目前很多使用Python分析数据的专业人员都将pandas作为基础工具来使用.pandas是以Numpy作为基础来设计开发的,Numpy是大量Python数据科学计算库的基础,pandas以此为基础,在计算方面具有很高的性能.pandas有两大数据结构,这是pandas的核心,数据分析的所有任务都离开它们,分别是Series和DataFrame.   二.pandas库的安装 paandas安装较为简单,如果使用An…
Pandas有两个主要的数据结构:Series和DataFrame. Series是一种类似于一维数组的对象,它由一组数据以及一组与之相关的数据标签构成.来看下它的使用过程 In [1]: from pandas import Series,DataFrame In [2]: import pandas as pd In [3]: obj=Series([4,7,-5,3]) In [5]: obj Out[5]: 0    4 1    7 2   -5 3    3 dtype: int64…
目录 金融数据 pandas-datareader TuShare 金融学图表 案例 金融数据 数据分析离不开数据的获取,这里介绍几种常用的获取金融方面数据的方法. pandas-datareader pandas-datareader 库包含了全球最著名的几家公司所整理的金融数据,这些数据库包括: 雅虎财经 谷歌财经 圣路易斯储备银行 肯尼斯·弗伦其数据库 世界银行 安装 pip install -U pandas-datareader 使用 引入库:import pandas_datarea…
Pandas Pandas是 Python下最强大的数据分析和探索工具.它包含高级的数据结构和精巧的工具,使得在 Python中处理数据非常快速和简单. Pandas构建在 Numpy之上,它使得以 Numpy为中心的应用很容易使用.Pandas的功能非常强大,支持类似于SQL的数据增.删.查.改,并且带有丰富的数据处理函数;支持时间序列分析功能;支持灵活处理缺失数据等. Pandas的安装相对来说比较容易,安装好 Numpy之后,就可以直接安装了,通过pip install pandas或下载…
目录 1 pandas简介 2 导入 3 使用 4 读取.写入 1 pandas简介 1.Pandas是什么? Pandas是一个强大的分析结构化数据的工具集: 它的使用基础是Numpy(提供高性能的矩阵运算): 用于数据挖掘和数据分析,同时也提供数据清洗功能. 2.DataFrame DataFrame是Pandas中的一个表格型的数据结构,包含有一组有序的列,每列可以是不同的值类型(数值.字符串.布尔型等),DataFrame即有行索引也有列索引,可以被看做是由Series组成的字典. pa…
一.pandas的数据结构介绍 1. Series 1.1 Series是由一种类似于一维数组的对象,它由一组数据以及一组与之相关的数据索引构成.仅由一组数据可产生最简单的Series. from pandas import * obj=Series([4,5,-7,6]) print obj print obj[1] 通过索引获取数组值 1.2Series的数组运算会保留索引与值的连接 from pandas import * obj2=Series([4,7,-5,3],index=['d'…
在我看来,对于Numpy以及Matplotlib,Pandas可以帮助创建一个非常牢固的用于数据挖掘与分析的基础.而Scipy(会在接下来的帖子中提及)当然是另一个主要的也十分出色的科学计算库,但是我认为前三者才是真正的Python科学计算的支柱. 所以,不需要太多精力,让我们马上开始Python科学计算系列的第三帖——Pandas.如果你还没有查看其他帖子,不要忘了去看一下哦! 导入Pandas 我们首先要导入我们的演出明星——Pandas. 这是导入Pandas的标准方式.显然,我们不希望每…
参考pandas官方文档: http://pandas.pydata.org/pandas-docs/stable/10min.html#min 1.pandas中的数据类型 Series 带有索引标记的一维数组,可以存储任何数据类型 #基本方法 >>s =pd.Series(data, index=index) >>import pandas as pd >>import numpy as np # 使用ndarray创建 >>indexs = ['a',…
上一节,我们已经安装了numpy,基于numpy,我们继续来看下pandas pandas用于做数据分析与数据挖掘 pandas安装 使用命令 pip install pandas 出现上图表示安装成功. pandas又两大数据结构,数据分析相关的都围绕着这两种结构进行: ①Series ②DataFrame Series用于存储序列这样的一维数据,DataFrame用于存储多维数据 Series对象 主要有2个相关联的数组组合在一起:①主元素数组 ②Index数组 index value 0…
数据的检索.加工与存储 1.利用Numpy和pandas对CSV文件进行写操作 对CSV文件进行写操作,numpy的savetxt()函数是与loadtxt()相对应的一个函数,他能以诸如CSV之类的区隔型文件格式保存数组: np.savetxt('np.csv',a,fmt='%.2f',delimiter=',',header="#1,#2,#3,#4") 上面的函数调用中,我们规定了用以保存数组的文件的名称.数组.可选格式.间隔符(默认为空格符)和一个可选的标题. 利用随机数组来…
一.pandas数据结构介绍 在pandas中有两类非常重要的数据结构,即序列Series和数据框DataFrame.Series类似于numpy中的一维数组,除了通吃一维数组可用的函数或方法,而且其可通过索引标签的方式获取数据,还具有索引的自动对齐功能:DataFrame类似于numpy中的二维数组,同样可以通用numpy数组的函数和方法,而且还具有其他灵活应用,后续会介绍到. 二.pandas数据结构之Series #使用模块之前先导入import pandas as pd from pan…
前面介绍了numpy和pandas的数据计算功能.但是这些数据都是我们自己手动输入构造的.如果不能将数据自动导入到python中,那么这些计算也没有什么意义.这一章将介绍数据如何加载以及存储. 首先来看读写文本格式的数据 pandas提供了一些用于将表格型数据读取为DataFrame对象的函数.如下表: csv文件是默认以,为分割符.可以通过命令行cat来读取文件内容. In [4]: cat /home/zhf/1.csv 1,2,3,4 5,6,7,8 9,10,11,12 同样的我们也可以…
乔丹是联盟上下公认的历史第一人,芝加哥公牛在他带领下几乎统治了上世纪 90 年代 NBA 整整 10 年,包括分别在 91-93 赛季和 96-98 赛季拿下的两次三连冠,要知道,NBA72 年历史上一共只出现过 4 次三连冠,而乔帮主一人便承包一半.下面就带大家从数据的角度回顾一下乔丹的职业生涯.PS:另外很多人在学习Python的过程中,往往因为遇问题解决不了或者没好的教程从而导致自己放弃,为此我建了个Python全栈开发交流.裙 :一久武其而而流一思(数字的谐音)转换下可以找到了,里面有最…
1 对Excel文件的操作 方法一: 使用xlrd库或者xlwt库进行对excel表格的操作读与写: 方法二: pandas库同样支持excel的读写操作:且更加简便. 2 pd.read_excel( )的参数 读Excel文件 df=pd.read_excel(io, sheet_name=0, # 工作表名称 header=0, # 指定作为列名的行 names=None, # 指定列的名字,传入一个list数据 index_col=None, # 指定列为索引列 usecols=None…
最近股市比较火,我7月初上车了,现在已经下了.中间虽然吃了点肉,但下车的时候都亏进去了,最后连点汤都没喝着. 这篇文章我们就用python对股票数据做个简单的分析.数据集是从1999年到2016年上海证券交易所的1095只股票. 共1000个文件. 我们的分析思路大致如下: 每年新发股票数 目前市值最大的公司有哪些 股票一段时间的涨跌幅如何 牛市的时候,个股表现如何 首先导入模块 import pandas as pd import numpy as np import os import se…
DataFrame是一个表格型的数据结构,它含有一组有序的列,每列可以是不同的值类型(数值,字符串,布尔型).DateFrame既有行索引也有列索引,可以被看作为由Series组成的字典. 构建DataFrame: 1.1.直接传入一个由等长列表或numpy数组组成的字典 ''' Created on 2016-8-10 @author: xuzhengzhu ''' from pandas import * data={'state':['ohio','ohio','ohio','nevada…