题目链接: 传送门 A^B mod C Time Limit: 1000MS     Memory Limit: 65536K 思路 快速加和快速幂同时运用,在快速加的时候由于取模耗费不少时间TLE了,最后又进行了改写. #include<stdio.h> typedef __int64 LL; LL mod_mulit(LL x, LL y,LL mod) { LL res = 0; while (y) { if (y & 1) { res += x; while (res >…
你会加吗? 时间限制:1000 ms  |  内存限制:65535 KB 难度:3   描述 给出两个整数A和N,计算(A + A^2 + A^3 + …… + A^(N - 1) + A^N)% 666666.   输入 多组测试数据.每组数据包含两个整数A,N(0≤A,N≤10^18). 输出 输出(A + A^2 + A^3 + …… + A^(N - 1) + A^N)% 666666是多少,每组数据占一行. 样例输入 2 5 10 20 样例输出 62 110 解题思路:对于求解A+A…
题目:https://www.acwing.com/problem/content/227/ 题意:给你n,k,m,然后输入一个n阶矩阵A,让你求  S=A+A^2+A^3.+......+A^k 思路:首先因为A是矩阵,我们k的范围很大,那么很明显看出A^k可以用矩阵快速幂来计算,但是这样我们只能算出其中一项,还是有k项,那么我们怎么计算和呢 我们可以看出前一项和后一项是有关联的,就是乘了一个A,我们怎么利用前面计算的结果呢,On遍历肯定不行,既然我们用到了遍历,那么优化我们很容易想到二分 假…
次方求模 时间限制:1000 ms  |  内存限制:65535 KB 难度:3   描述 求a的b次方对c取余的值   输入 第一行输入一个整数n表示测试数据的组数(n<100)每组测试只有一行,其中有三个正整数a,b,c(1=<a,b,c<=1000000000) 输出 输出a的b次方对c取余之后的结果 样例输入 3 2 3 5 3 100 10 11 12345 12345 样例输出 3 1 10481 注意用long long 型 #include<stdio.h>…
Description Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak. Input The input contains exactly one test case. The first line of input contains three positive integers n (n ≤ 30), k (k ≤ 109) and m (m < 104). Then…
由于方块最多涉及3行,于是考虑将每两行状压起来,dfs搜索每种状态之间的转移. 这样一共有2^12种状态,显然进行矩阵快速幂优化时会超时,便考虑减少状态. 进行两遍bfs,分别为初始状态可以到达的状态,和可以到达终止状态的状态. 同时出现在两次bfs中的状态即为有效状态,一共有141种. 这样就可以跑出来了. 未加矩阵快速幂 50分 ..,..] of longint= ((-,,),(-,,),(,,),(,,),(-,,),(-,,),(,,),(-,,)); dy:..,..] of lo…
裸的pell方程. 然后加个快速幂. No more tricks, Mr Nanguo Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Submission(s): 320    Accepted Submission(s): 207 Problem Description Now Sailormoon girls want to tell you a ancien…
题意:求S = A + A2 + A3 + … + Ak.(mod m) 这道题很明显可以用矩阵乘法,但是这道题的矩阵是分块矩阵, 分块矩阵概念如下:当一个矩阵A中的单位元素aij不是一个数值而是一个矩阵是A矩阵称为分块矩阵,在性质满足的前提下依然满足矩阵加法乘法. 例如矩阵乘法A×B,将B按行分块,可以看成矩阵A乘列向量,其中B中每个元素是一个行向量:将A按列分块同理. 简单地说,就是矩阵里的元素还是个矩阵.这道题我们可以像这样构建矩阵: ∵Sn=Sn-1+Ak   ∴有如下转移图      …
poj 3070 && nyoj 148 矩阵快速幂 题目链接 poj: http://poj.org/problem?id=3070 nyoj: http://acm.nyist.net/JudgeOnline/problem.php?pid=148 思路: 矩阵快速幂 直接求取 代码: #include <iostream> #include <string.h> #include <math.h> #include <stdio.h>…
---恢复内容开始--- 题目链接: https://vjudge.net/problem/1812693/origin 这题的mod运算很恶心,真的... 本题有正反两个思路,一个是正面求解其不能成立的情况, 一个是反面求解,用total减. 我用的是正面求解. 一共有种情况: 1. 全是球 :poww(2, a)*poww(2,c)-1 2. 全是拍 : poww(2, a)*poww(2, b)-1 3. 一拍多球(2种可能):    1 -- (poww(2, a)*poww(2, c)…
题目链接: hdu: http://acm.hdu.edu.cn/showproblem.php?pid=5187 bc(中文): http://bestcoder.hdu.edu.cn/contests/contest_chineseproblem.php?cid=571&pid=1002 题解: 求(2^n-2)%p,题目看错,一天都没什么思路,冷静一下.. 代码: #include<iostream> #include<cstring> #include<cst…
点击打开链接 次方求模 时间限制:1000 ms  |  内存限制:65535 KB 难度:3 描述 求a的b次方对c取余的值 输入 第一行输入一个整数n表示测试数据的组数(n<100) 每组测试只有一行,其中有三个正整数a,b,c(1=<a,b,c<=1000000000) 输出 输出a的b次方对c取余之后的结果 样例输入 3 2 3 5 3 100 10 11 12345 12345 样例输出 3 1 10481 把指数反复二分.最后再合并,很裸的快速幂,注意题目中没有0次方的情况,…
求$G(a,b,n,p) = (a^{\frac {p-1}{2}}+1)(b^{\frac{p-1}{2}}+1)[(\sqrt{a} + \sqrt{b})^{2F_n} + (\sqrt{a} - \sqrt{b})^{2F_n}] (mod p)$ 左边可以看出是欧拉判定准则,那么只有当a,b其中一个满足是模p下的非二次剩余时G()为0. 右边的式子可以先把平方放进去,发现这个已经是通项公式了,那么$a+b+\sqrt{ab}$和$a+b-\sqrt{ab}$就是它的特征根了,反代回二阶…
接上一篇,那个递推式显然可以用矩阵快速幂优化...自己随便YY了下就出来了,学了一下怎么用LaTeX画公式,LaTeX真是个好东西!嘿嘿嘿 如上图.(刚画错了一发...已更新 然后就可以过V2了 orz CZL卡常大师,我怎么越卡越慢啊QAQ #include<iostream> #include<cstdlib> #include<cstring> #include<cstdio> #include<cmath> #define ll long…
非010串 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 如果一个01字符串满足不存在010这样的子串,那么称它为非010串. 求长度为n的非010串的个数.(对1e9+7取模)   Input 一个数n,表示长度.(n<1e15) Output 长度为n的非010串的个数.(对1e9+7取模) Input示例 3 Output示例 7 解释: 000 001 011 100 101 110 111 读完题,这样的题目肯定是能找到规律所在的,要不然数据太大根本无法算.假设现在…
还有3天,今天考试又崩了.状态还没有调整过来... 第一题:小L的二叉树 勤奋又善于思考的小L接触了信息学竞赛,开始的学习十分顺利.但是,小L对数据结构的掌握实在十分渣渣.所以,小L当时卡在了二叉树. 在计算机科学中,二叉树是每个结点最多有两个子结点的有序树.通常子结点被称作“左孩子”和“右孩子”.二叉树被用作二叉搜索树和二叉堆.随后他又和他人讨论起了二叉搜索树.什么是二叉搜索树呢?二叉搜索树首先是一棵二叉树.设key[p]表示结点p上的数值.对于其中的每个结点p,若其存在左孩子lch,则key…
http://poj.org/problem?id=1995 简单的快速幂问题 要注意num每次加过以后也要取余,否则会出问题 #include<iostream> #include<cstdio> using namespace std; typedef long long ll; ll mod_pow(ll x,ll n,ll mod) { ll res=; ) { ) res=res*x%mod; x=x*x%mod; n>>=; } return res; }…
题目链接 题意:有n个猫,开始的时候每个猫都没有坚果,进行k次操作,g x表示给第x个猫一个坚果,e x表示第x个猫吃掉所有坚果,s x y表示第x个猫和第y个猫交换所有坚果,将k次操作重复进行m轮,问最后这n个猫各自有多少坚果. 题解:构造(n+1)*(n+1)的单位矩阵,data[i][j]表示第i个猫与第j个猫进行交换,最后一列的前n项就是每个猫的坚果数目,s操作就交换对应行,矩阵快速幂时间复杂度O(n^3*log2(m))会超时,我们注意到在n*n的范围内每一行只有一个1,利用稀疏矩阵的…
题目链接 题意:有一排砖,可以染红蓝绿黄四种不同的颜色,要求红和绿两种颜色砖的个数都是偶数,问一共有多少种方案,结果对10007取余. 题解:刚看这道题第一感觉是组合数学,正向推了一会还没等推出来队友就打表找到公式了,然后我就写了一个快速幂加个费马小定理就过了去看别的题了,赛后找到了一个很不错的博客:传送门,原来这道题也可以用DP+矩阵快速幂AC.下面说下组合数学的做法: 首先一共有4^n种情况,我们减去不符合条件的情况就行了,从中取k个进行染红绿色一共C(n,k)种情况,剩下的蓝黄色一共有2^…
题目链接:http://lightoj.com/volume_showproblem.php?problem=1213 #include <stdio.h> int cases, caseno; int n, K, MOD; int A[1001]; int main() { scanf("%d", &cases); while( cases-- ) { scanf("%d %d %d", &n, &K, &MOD); i…
/* 题意:给定一个长度为n的序列a. 两种操作: 1.给定区间l r 加上某个数x. 2.查询区间l r sigma(fib(ai)) fib代表斐波那契数列. 思路: 1.矩阵操作,由矩阵快速幂求一个fib数根据矩阵的乘法结合率,A*C+B*C=(A+B)*C; 这样可以通过线段树维护某个区间2*1矩阵的和. 2.时限卡的紧...用我的矩阵乘法板子TLE了.所以把板子里边的三重循环改成手工公式... 3.注意(a+b)%mod.这种,改成if(a+b>=mod)a+b-mod这种形式时间几乎…
题意:给一个环,环上有n块,每块有个值,每一次操作是对每个点,他的值变为原来与他距离不超过d的位置的和,问k(10^7)次操作后每块的值. 解法:一看就要化为矩阵来做,矩阵很好建立,大白书P157页有讲,大概为: [1 1 0 .. 0 1] [1 1 1 .. .. 0] ... [1 1 .. .. .. 1]  的循环矩阵,可以证明,循环矩阵的乘积还是循环矩阵,且循环矩阵的性质: a[i][j] = a[i-1][j-1] (循环的) ,所以,我们每次矩阵相乘只需要算出第一行,余下的不需要…
2326: [HNOI2011]数学作业 Time Limit: 10 Sec Memory Limit: 128 MB Submit: 1564 Solved: 910 [Submit][Status][Discuss] Description Input Output Sample Input Sample Output HINT Source 题解: 矩乘快速幂,构造矩阵: 其中k为位数,所以分段进行快速幂: 1~9:10~99:100~999:-. 开始4A6W,然后加了快速乘AC了,但…
2014多校第一题,当时几百个人交没人过,我也暴力交了几发,果然不行. 比完了去学习了BSGS才懂! 题目:http://acm.hdu.edu.cn/showproblem.php?pid=4887 Endless Punishment Time Limit: 30000/15000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Submission(s): 52    Accepted Submissi…
题目链接:http://poj.org/problem?id=3233 解题报告:输入一个边长为n的矩阵A,然后输入一个k,要你求A + A^2 + A^3 + A^4 + A^5.......A^k,然后结果的每个元素A[i][j] % m.(n <= 30,k < 10^9,m < 10^4) 要用到矩阵快速幂,但我认为最重要的其实还是相加的那个过程,因为k的范围是10^9,一个一个加肯定是不行的,我想了一个办法就是我以k = 8为例说明: ans = A + A^2 + A^3 +…
Sumdiv Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 16244 Accepted: 4044 Description Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. Determine S modulo 9901 (the rest of the division of S by 9901).…
一开始找矩阵快速幂的题来做时就看到了这题,题意就是让你求出如图所示的第n个三角形中指向向上的小三角形个数.从图中已经很容易看出递推关系了,我们以f[n]表示第n个大三角形中upward的小三角形个数,g[n]表示第n个大三角形中downward的小三角形个数,然后,递推关系就是: f[n]= 3*f[n-1]+1*g[n-1]; (1) g[n]= 3*g[n-1]+1*f[n-1];  (2) 其中f[0]= 1,g[0]= 0(一开始的纯三角形是从n=0开始的),然后……就没有然后了,直觉上…
首先我们知道,对于所有种情况,我们可以将每一位可以放的 数的值加起来,所有位置的乘起来,等于的就是最后的答案,具体 为什么正确,可以根据乘法分配律来想一想. 那么对于所有不做要求的,快速幂直接算就行了,然后快排下,就知道 每个位置不放那些值,减掉后乘进去就行了. /************************************************************** Problem: User: BLADEVIL Language: Pascal Result: Accep…
#include<stdio.h> #include<stdlib.h> //快速幂算法,数论二分 long long powermod(int a,int b, int c) //不用longlong就报错,题目中那个取值范围不就在2的31次方内 { long long t; if(b==0) return 1%c; if(b==1) return a%c; t=powermod(a,b/2,c);//递归调用,采用二分递归算法,,注意这里n/2会带来奇偶性问题 t=t*t%c;…
题目链接: http://acm.hust.edu.cn/vjudge/contest/122094#problem/G Power of Matrix Time Limit:3000MSMemory Limit:0KB 问题描述 给你一个矩阵A,求A+A^2+A^3+...+A^k 输入 Input consists of no more than 20 test cases. The first line for each case contains two positive integer…