题面 传送门(bzoj) 传送门(CF) \(llx\)身边妹子成群,这天他需要从\(n\)个妹子中挑出\(3\)个出去浪,但是妹子之间会有冲突,表现为\(i,j\)之间连有一条边\((i,j)\),定义一种选择方案的权值为\(Ai+Bj+Ck,i<j<k\),求所有选择方案的权值之和 题解 容斥,至少\(0\)条边相连的方案\(-\)至少\(1\)条边相连的方案\(+\)至少\(2\)条边相连的方案\(-\)至少\(3\)条边相连的方案 至少\(3\)条边相连的方案最难数,是个三元环计数,和…
题意:给出一个图,求$\sum\limits_{\substack{i\lt j\lt k\\\nexists(i,j),(j,k),(i,k)}}Ai+Bj+Ck$ 挺好的一道题==,就是稍微毒了点 考虑容斥,先算$all=\sum\limits_{i\lt j\lt k}Ai+Bj+Ck$ 我们枚举$0\leq t\leq n-1$,它作为$i$被计数$\binom{n-1-i}2$次,作为$j$被计数$i(n-1-i)$次,作为$k$被计数$\binom i2$次,直接统计即可 再算$su…
[BZOJ5332][SDOI2018]旧试题(数论,三元环计数) 题面 BZOJ 洛谷 题解 如果只有一个\(\sum\),那么我们可以枚举每个答案的出现次数. 首先约数个数这个东西很不爽,就搞一搞,变成\(\displaystyle \sum_{d|i}1\) 那么原式就可以写成:\(\displaystyle \sum_{i=1}^A\sum_{j=1}^B\sum_{k=1}^C\sum_{d=1}^Ad|ijk\). 既然\(d|ijk\),意味着\(d\)可以分别拆成\(i\)的一个…
传送门 好久没有做过图论题了-- 考虑\(k\)次方的组合意义,实际上,要求的所有方案中导出子图边数的\(k\)次方,等价于有顺序地选出其中\(k\)条边,计算它们在哪一些图中出现过,将所有方案计算出来的答案加起来. 对于\(k\)条边来说,如果它们占据了\(x\)个点,那么它们就会出现在\(2^{n-x}\)张图中. 那么\(k=1\)答案显然是\(m \times 2^{n-2}\) \(k=2\)时有\(3\)种情况:①两条边重合,等价于\(k=1\):②两条边不重合但共一个顶点,对于一条…
题目大意: 给定\(a, b, c\),求\(\sum \limits_{i = 1}^a \sum \limits_{j = 1}^b \sum \limits_{k = 1}^c [(i, j) = 1][(j, k) = 1][(i, k) = 1]\) $a, b, c \leq 5*10^4 $ 首先莫比乌斯反演 $Ans = \sum \limits_{i = 1}^a \sum \limits_{j = 1}^b \sum \limits_{k = 1}^c [(i, j) = 1…
hdu 6184 Counting Stars(三元环计数) 题意: 给一张n个点m条边的无向图,问有多少个\(A-structure\) 其中\(A-structure\)满足\(V=(A,B,C,D)\) && \(E=(AB,BC,CD,DA,AC)\) 显然\(A-structure\)是由两个有公共边的三元环构成的 \(1 <=n <= 1e5\) \(1 <= m <= min(2e5,n*(n-1)/2)\) 思路: 三元环计数 做法1. ①统计每个点…
传送门 这道题的思路似乎可以给很多同时枚举三个量的反演题目提供一个很好的启发-- 首先有结论:\(d(ijk) = \sum\limits_{x|i}\sum\limits_{y|j}\sum\limits_{z|k}[x \perp y][y \perp z][x \perp z]\).正确性证明考虑:对于质数\(p\),设\(i,j,k\)中质因子\(p\)的个数为\(a,b,c\).在\(x,y,z\)中至多只能有\(1\)个数含质因子\(p\),有以下情况:\(x,y,z\)中都没有\(…
题目链接 CF 原题 \(Description\) 有n个点,其中有m条边连接两个点.每一个没有连边的三元组\((i,j,k)(i<j<k)\)对答案的贡献为\(A*i+B*j+C*k\),求所有无连边三元组的贡献和. \(Solution\) 直接求无连边三元组依旧很难.考虑用所有方案去减,那 Ans=所有方案-至少有1条连边+至少有2条连边-有3条边("至少"显然比较好做啊). 对于所有方案,A,B,C可以分别统计,即枚举哪个是A/B/C,剩下的随便组合. 对于至少1…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6184 题意: n个点m条边的无向图,问有多少个A-structure 其中A-structure满足V=(A,B,C,D) && E=(AB,BC,CD,DA,AC) 解法: 可以看出A-structure是由两个有公共边的三元环构成的,然后就变成了这道题. http://www.cnblogs.com/spfa/p/7495438.html #include <stdio.h>…
题面 传送门 给出一张无向图,求 \(4\) 个点构成两个有公共边的三元环的方案数. 题解 orz余奶奶,orz zzk 首先,如果我们知道经过每条边的三元环个数\(cnt_i\),那么答案就是\(\sum_{i=1}^m{cnt_i\choose 2}\) 所以现在问题就是该怎么数三元环 据说有一个设阈值的\(O(m\sqrt{m})\)的做法,不过常数太大了,这里不讲 我们把每一条边重定向,设它连接的两个点的度数分别为\(deg_u\)和\(deg_v\),那么把这条边定为从度数大的连向度数…