$ \color{#0066ff}{ 题目描述 }$ Blinker最近喜欢上一个奇怪的游戏. 这个游戏在一个 \(N \times M\) 的棋盘上玩,每个格子有一个数.每次\(Blinker\)会选择两个相邻的格子,并使这两个数都加上\(1\). 现在\(Blinker\)想知道最少多少次能使棋盘上的数都变成同一个数,如果永远不能变成同一个数则输出\(-1\). \(\color{#0066ff}{输入格式}\) 输入的第一行是一个整数\(T\),表示输入数据有T轮游戏组成. 每轮游戏的第一…
正解:二分+网络流 解题报告: 传送门$QwQ$ 这种什么,"同时增加",长得就挺网络流的$QwQ$?然后看到问至少加多少次,于是考虑加个二分呗?于是就大体确定了做题方向,用的网络流+二分 然后就考虑怎么建图呗$QwQ$ 首先考虑二分出每个点的值,然后就可以根据这个值求出每个点要增加的多少以及总的修改次数 然后相邻显然考虑黑白染色黑连$S$白连$T$彼此之前连$inf$,跑个最大流判断跑满了没有. 感觉好像要做完辣? 但是这时候要注意到一个问题$QwQ$,就说不能证明这个次数有可二分性…
2756:[SCOI2012]奇怪的游戏 Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 4926  Solved: 1362[Submit][Status][Discuss] Description Blinker最近喜欢上一个奇怪的游戏. 这个游戏在一个 N*M 的棋盘上玩,每个格子有一个数.每次 Blinker 会选择两个相邻的格子,并使这两个数都加上 1. 现在 Blinker 想知道最少多少次能使棋盘上的数都变成同一个数,如果永远不能变成…
学习资料 -----1----- -----2----- P5038 [SCOI2012]奇怪的游戏 一道甚神但没用到高深模型的题 思路 没思路,看题解吧 代码 #include <iostream> #include <cstdio> #include <cstring> #include <queue> #define ll long long #define point(x, y) ((x - 1) * m + y) using namespace s…
题目 Blinker最近喜欢上一个奇怪的游戏. 这个游戏在一个 N*M 的棋盘上玩,每个格子有一个数.每次 Blinker 会选择两个相邻 的格子,并使这两个数都加上 1. 现在 Blinker 想知道最少多少次能使棋盘上的数都变成同一个数,如果永远不能变成同 一个数则输出-1. 输入格式 输入的第一行是一个整数T,表示输入数据有T轮游戏组成. 每轮游戏的第一行有两个整数N和M, 分别代表棋盘的行数和列数. 接下来有N行,每行 M个数. 输出格式 对于每个游戏输出最少能使游戏结束的次数,如果永远…
题解 题目 做这题之前,做了一道叫星际战争的题,很容易想到二分 \(+\) 网络流,那么二分啥呢? 我们先推一下式子,因为是对相邻格子加数,那么可以联想到黑白染色类问题. 设有黑色格子 \(B\) 个,其格子中初始数的和为 \(b\),白色格子同理,个数为 \(W\) 个,初始权值和为 \(w\) 个,最后变成的同一个数为 \(num\). 可以得出 \(B×num-b=W×num-w\) 化简得 \(num=\frac{b-w}{B-W}\). 首先对于化简式,其必要条件是 \(B\neq W…
题目链接 \(Description\) \(Solution\) 这种题当然要黑白染色.. 两种颜色的格子数可能相同,也可能差1.记\(n1/n2\)为黑/白格子数,\(s1/s2\)为黑/白格子权值和. 如果\(n1\neq n2\),假设\(n1>n2\),因为每次是同时给两种颜色+1,所以最后的差也只能是\(s1-s2\)(\(s1>s2\)),个数只差1,所以也只能都变成\(s1-s2\).(注意\(s1-s2\geq A_{max}\)) 如果\(n1=n2\),假设\(x\)合法…
题目链接 题意分析 首先我们需要求的是统一以后的值\(x\) 并且一般的棋盘操作我们都需要黑白染色 那么对于棋盘格子是偶数的情况的话 答案是存在单调性的 因为如果统一之后 两两搭配还是可以再加一个的 如果棋盘格子是奇数的话 那么黑格子数量为\(num1\) 权值和为\(sum1\) 白格子数量为\(num2\) 权值和为\(sum2\) 那么 \[num1*x-sum1=num2*x-sum2\] 然后我们可以使用最大流检验合法性 用源点向黑色的点连边权为\(x-num[i][j]\)的边 白色…
这道题提醒我,要有将棋盘黑白染色的意识,尤其是看到相邻格子这样的条件的时候,然后就是要用到与其有关的性质与特点以体现其作用,这道题就是用到了黑格子与白格子之间的关系进行的,其出发点是每次一定会给一个黑格子与一个白格子均加一,那么最后黑白格子所加量相同(最关键的地方).然后呢,还要观察,最终高度与行动次数一一对应,于是求解他们两个是等效的,然后发现如果最后高度确定,是很好验证是否可行的,就是方格下水道.进一步分析,当黑格与白格的数量不同那么最终高度一定,可以一下判解.当数量相同的时候关于最终高度是…
2756: [SCOI2012]奇怪的游戏 Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 1594  Solved: 396[Submit][Status][Discuss] Description Blinker最近喜欢上一个奇怪的游戏. 这个游戏在一个 N*M 的棋盘上玩,每个格子有一个数.每次 Blinker 会选择两个相邻 的格子,并使这两个数都加上 1. 现在 Blinker 想知道最少多少次能使棋盘上的数都变成同一个数,如果永远不能变…