pid=4927">Series 1 大意: 题意不好翻译,英文看懂也不是非常麻烦,就不翻译了. Problem Description Let A be an integral series {A1, A2, . . . , An}. The zero-order series of A is A itself. The first-order series of A is {B1, B2, . . . , Bn-1},where Bi = Ai+1 - Ai. The ith-orde…
HDU 4927 Series 1 题目链接 题意:给定一个序列,要求不断求差值序列.直到剩一个,输出这个数字 思路:因为有高精度一步.所以要推理一下公式,事实上纸上模拟一下非常easy推出公式就是一个类似杨辉三角的组合数求和,只是奇数位置是加,偶数位置是减,然后高精度过掉 代码: 本人的第一个JAVA程序^ ^ import java.util.Scanner; import java.math.BigInteger; public class Main { public static voi…
HDU 4927 −ai,直到序列长度为1.输出最后的数. 思路:这题实在是太晕了,比赛的时候搞了四个小时,从T到WA,唉--对算组合还是不太了解啊.如今对组合算比較什么了-- import java.io.*; import java.math.*; import java.util.*; public class Main { public static void main(String[] args) { Scanner cin=new Scanner (new BufferedInput…
http://acm.hdu.edu.cn/showproblem.php?pid=4927 给定一个长度为n的序列a,每次生成一个新的序列,长度为n-1,新序列b中bi=ai+1−ai,直到序列长度为1.输出最后的数. n有3000果断用大数,类似杨辉三角推出每个数对最终结果的贡献,利用公式:c[n][m] = c[n][m-1]*(n-m+1)/m防超时 import java.math.BigInteger; import java.util.*; public class Main {…
// 大数继续 Problem Description Recall the definition of the Fibonacci numbers: f1 := 1 f2 := 2 fn := fn-1 + fn-2 (n >= 3) Given two numbers a and b, calculate how many Fibonacci numbers are in the range [a, b]. Input The input contains several t…
Dressing Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 2964 Accepted Submission(s): 1291 Problem Description Wangpeng has N clothes, M pants and K shoes so theoretically he can have N×M×K differ…
Problem Description Apple is Taotao's favourite fruit. In his backyard, there are three apple trees with coordinates (x1,y1) , (x2,y2) , and (x3,y3) . Now Taotao is planning to plant a new one, but he is not willing to take these trees too close. He…
import java.util.Scanner; import java.math.BigInteger; public class Main { private static int [] a = new int[3005]; private static int T; private static int n; public static void solve() { BigInteger rs = BigInteger.ZERO; BigInteger temp = BigInteger…
// 继续大数,哎.. Problem Description A Fibonacci sequence is calculated by adding the previous two members the sequence, with the first two members being both 1. F(1) = 1, F(2) = 1, F(3) = 1,F(4) = 1, F(n>4) = F(n - 1) + F(n-2) + F(n-3) + F(n-4) Your tas…