[深度学习] ncnn编译使用】的更多相关文章

文章目录 工程 ncnn工程编译使用(cpu) ncnn工程编译使用(vulkan) 参考 工程 ncnn工程编译使用(cpu) 在linux下建立如CMakeLists文件即可编译生成ncnn工程 # 最低cmake版本 cmake_minimum_required(VERSION 3.2) # 工程名 project(ncnnTest) # 添加OpenCV支持 find_package(OpenCV REQUIRED) # 添加OpenMP支持 FIND_PACKAGE(OpenMP RE…
使用TVM将深度学习模型编译为WebGL TVM带有全新的OpenGL / WebGL后端! OpenGL / WebGL后端 TVM已经瞄准了涵盖各种平台的大量后端:CPU,GPU,移动设备等.这次,添加了另一个后端:OpenGL / WebGL. OpenGL / WebGL使能够在未安装CUDA的环境中利用GPU.在浏览器中使用GPU的方法. 后端允许以3种不同的方式使用OpenGL / WebGL: 本地OpenGL:可以将深度学习模型编译为OpenGL,完全使用Python在本地计算机…
目录 1 介绍 2 Ubuntu 18下ncnn安装和使用 2.1 Ubuntu 18下ncnn编译安装 2.2 Ubuntu 18下ncnn使用 3 Windows 10下ncnn安装和使用 3.1 Windows 10下ncnn编译安装 3.2 Windows 10下ncnn使用 4 参考 1 介绍 ncnn是腾讯开发的一个为手机端极致优化的高性能神经网络前向计算框架,无第三方依赖,跨平台,但是通常都需要protobuf和opencv.ncnn目前已在腾讯多款应用中使用,如 QQ,Qzone…
1. 搭建的环境和代码:win7 64bit + vs2013+CUDA7.5 http://blog.csdn.net/thesby/article/details/50880802 2. 编译,制作数据集,训练参考的: http://www.cnblogs.com/denny402/tag/caffe/ http://linusp.github.io/2015/07/21/caffe-base-usage.html http://blog.csdn.NET/u013657981/articl…
深度学习框架caffe特点,富有表达性.快速.模块化.下面介绍caffe如何在Ubuntu上编译安装. 1. 前提条件 安装依赖的软件包: CUDA 用来使用GPU模式计算. 建议使用 7.0 以上最新的版本 BLAS via ATLAS, MKL, or OpenBLAS. Boost >= 1.55 protobuf, glog, gflags, hdf5 可选依赖软件包: OpenCV >= 2.4 including 3.0 IO libraries: lmdb, leveldb (n…
写在前面 本文叙述了在Ubuntu16.04 Server下安装CUDA8.0,cuDNN6.0以及源码编译安装TensorFlow1.4.0(GPU版)的亲身经历,包括遇到的问题及解决办法,也有一些自己的经验,希望能对读者有所帮助.期间参考了许多前人的文章,后文会一一附上链接,在此先行谢过.在下能力有限,经验不足,请大家多多指教. 关键词:Ubuntu16.04 Server   深度学习环境搭建   安装   显卡驱动   CUDA8.0   cuDNN6.0   Bazel   源码编译 …
[神经网络与深度学习][CUDA开发]caffe-windows win32下的编译尝试 标签:[神经网络与深度学习] [CUDA开发] 主要是在开发Qt的应用程序时,需要的是有一个使用的库文件也只是win32,死活找不到x64的库,对是gnuwin32,没有找到gnuwin64,也是哭了,于是想着是不是能够将Caffe按照win32的配置进行重新编译一番.结果可想而知,遇到了一堆的问题,很伤心,最后也没有解决,不,最后是完全将cuDNN和CUDA全部去掉后才成功的,因为cuDNN没有找到所谓的…
最近想熟悉一下深度学习,体验了一下Caffe,简单写写训练和分类的过程: 1.下载Caffe VS2013工程:https://github.com/Microsoft/caffe 2. 解压并用VS2013打开解决方案caffe-master\windows\Caffe.sln,默认配置是x64 Debug 2.  重命名caffe-master\windows\CommonSettings.props.example为caffe-master\windows\CommonSettings.p…
深度学习编译与优化Deep Learning Compiler and Optimizer…
阿里妹导读:近日,阿里正式开源轻量级深度学习端侧推理引擎“MNN”. AI科学家贾扬清如此评价道:“与 Tensorflow.Caffe2 等同时覆盖训练和推理的通用框架相比,MNN 更注重在推理时的加速和优化,解决在模型部署的阶段的效率问题,从而在移动端更高效地实现模型背后的业务.这和服务器端 TensorRT 等推理引擎的想法不谋而合.在大规模机器学习应用中,考虑到大规模的模型部署,机器学习的推理侧计算量往往是训练侧计算量的十倍以上,所以推理侧的优化尤其重要.” MNN背后的技术框架如何设计…