博客:www.jiaopengzi.com 焦棚子的文章目录 请点击下载附件 1.背景 在财务科目中,需要按照科目层级来显示:在excel中都是用公式来实现,而且对于数据的管理及更新是一件头痛的事情,那么PP来做一个如何呢. 2.必备知识 前提知道PATH相关父子层级的公式及ISFILTERED不知道的去看看官网解释. 传送门: Parent and Child Functions (DAX) ISFILTERED 函数 (DAX) 3.上案例 维度表科目ID与事实表科目ID建立1:n的关系 在…
Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.3 http://blog.csdn.net/sunbow0 第二章Deep Belief Network (深度信念网络) 实例 3.1 測试数据 依照上例数据,或者新建图片识别数据. 3.2 DBN实例 (读取固定样本:来源于经典优化算法測试函数Sphere Model)***********// //2 读取样本数据 Logger.getRootLogger.setLe…
索引: 目录索引 一.API 列表 .DeepClone() 用于 Model / Entity / ... ... 等引用类型对象的深度克隆 特性说明 1.不需要对对象做任何特殊处理,直接 .DeepClone() 即可得到该对象的深度克隆 2.不受对象层次深度限制,均可实现深度克隆(下面会给出几个简单示例 ... ...) 二.API 使用 1.命名空间,只需: using MyDAL.ModelTools; 2.被深度克隆的对象只需是一个 class ,如下: public class M…
Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.1 http://blog.csdn.net/sunbow0 Spark MLlib Deep Learning工具箱,是依据现有深度学习教程<UFLDL教程>中的算法.在SparkMLlib中的实现.详细Spark MLlib Deep Learning(深度学习)文件夹结构: 第一章Neural Net(NN) .源代码 .源代码解析 .实例 第二章Deep Belie…
Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.2 http://blog.csdn.net/sunbow0 第二章Deep Belief Network (深度信念网络) 基础及源代码解析 2.1 Deep Belief Network深度信念网络基础知识 )综合基础知识參照: http://tieba.baidu.com/p/2895759455   http://wenku.baidu.com/link?url=E8…
http://blog.csdn.net/striping/article/details/17449653 IOPS 即I/O per second,即每秒进行读写(I/O)操作的次数,多用于数据库等场合,衡量随机访问的性能. 并发IO的概念:并发IO,指多个IO可以同时被处理,比如IO1可以访问a盘,IO2可以同时访问b盘.并发IO的反义词是顺序IO. 条带深度:raid5的128KB条带,128KB条带=磁盘数量乘以每个磁盘上组成这个条带的segment大小,也就是说一个条带把排列的多个磁…
深度神经网络(Deep Neural Networks,简称DNN)是深度学习的基础. 回顾监督学习的一般性问题.假设我们有$m$个训练样本$\{(x_1, y_1), (x_2, y_2), …, (x_m, y_m)\}$,其中$x$为输入向量,$y$为输出向量,利用这个训练样本训练模型的参数,使得给定模型一个$x_{test}$,其能够预测$y_{test}$. 采用CNN模型的时候,$x$输入向量全部喂给输入层,$y$输出向量和输出层的向量一起计算损失函数,而其中若干个神经元的隐藏层,每…
Policy Gradient 初始学习李宏毅讲的强化学习,听台湾的口音真是费了九牛二虎之力,后来看到有热心博客整理的很细致,于是转载来看,当作笔记留待复习用,原文链接在文末.看完笔记再去听一听李宏毅老师的视频,就可以听懂个大概了.当然了还有莫凡的强化学习更具实战性,听莫凡的课基本上可以带我们入门. 术语和基本思想 基本组成: 1.actor (即policy gradient要学习的对象, 是我们可以控制的部分) 2.环境 environment (给定的,无法控制) 3.回报函数 rewar…
转载来源:http://blog.csdn.net/fengbingchun/article/details/50087005 这篇文章主要是为了对深度学习(DeepLearning)有个初步了解,算是一个科普文吧,文章中去除了复杂的公式和图表,主要内容包括深度学习概念.国内外研究现状.深度学习模型结构.深度学习训练算法.深度学习的优点.深度学习已有的应用.深度学习存在的问题及未来研究方向.深度学习开源软件. 一.            深度学习概念 深度学习(Deep Learning, DL…
深度树匹配模型(TDM) 算法介绍 Tree-based Deep Match(TDM)是由阿里妈妈精准定向广告算法团队自主研发,基于深度学习上的大规模(千万级+)推荐系统算法框架.在大规模推荐系统的实践中,基于商品的协同过滤算法(Item-CF)是应用较为广泛的,而受到图像检索的启发,基于内积模型的向量检索算法也崭露头角,这些推荐算法产生了一定的效果,但因为受限于算法模型本身的理论限制,推荐的最终结果并不十分理想.近些年,深度学习技术逐渐兴起,在包括如图像.自然语言处理.语音等领域的应用产生了…
大牛推荐的入门用深度学习导论,刚拿到有点懵,第一次接触PPT类型的学习资料,但是耐心看下来收获还是很大的,适合我这种小白入门哈哈. 原PPT链接:http://www.slideshare.net/tw_dsconf/ss-62245351?qid=108adce3-2c3d-4758-a830-95d0a57e46bc&v=&b=&from_search=3 我也放到我的盘里啦: 链接:https://pan.baidu.com/s/13xTs4qJKv2Ere4CscCQeDw…
笔记转载于GitHub项目:https://github.com/NLP-LOVE/Introduction-NLP 13. 深度学习与自然语言处理 13.1 传统方法的局限 前面已经讲过了隐马尔可夫模型.感知机.条件随机场.朴素贝叶斯模型.支持向量机等传统机器学习模型,同时,为了将这些机器学习模型应用于 NLP,我们掌握了特征模板.TF-IDF.词袋向量等特征提取方法.而这些方法的局限性表现为如下: 数据稀疏 首先,传统的机器学习方法不善于处理数据稀疏问题,这在自然语言处理领域显得尤为突出,语…
记录一个常见的面试题,javascript中对象的深度克隆,转载自:http://www.2cto.com/kf/201409/332955.html 今天就聊一下一个常见的笔试.面试题,js中对象的深度克隆.翻了下这个题目,在很多地方出现过,已经算一个老的题目了,但是每年的校招中总会考到,其实想想,这个题目考查的知识点还是蛮多的,尤其是对基础知识的考查.好了,闲话不多说,开始正题. 一.js中的对象   谈到对象的克隆,必定要说一下对象的概念.   js中的数据类型分为两大类:原始类型和对象类…
1.深度 所谓深度,就是在openGL坐标系中,像素点Z坐标距离摄像机的距离.摄像机可能放在坐标系的任何位置,那么,就不能简单的说Z数值越大或越小,就是越靠近摄像机. 2.深度缓冲区 深度缓冲区原理就是把一个距离观察平面(近裁剪面)的深度值(或距离)与窗口中的每个像素相关联.      首先,使用glClear(GL_DEPTH_BUFFER_BIT),把所有像素的深度值设置为最大值(一般是远裁剪面).      然后,在场景中以任意次序绘制所有物体.硬件或者软件所执行的图形计算把每一个绘制表面…
Android进阶 | 摆脱斗图 | 行业交流 | 深度学习 | 付费 其实在很早的时候我就有想过,是不是退出一些群,因为群太多了,里面的水友也多,基友也多,就难免会水起来,这样既耽误学习又耽误工作,我是深有体验呀,所有才觉得现在这个时代,专心做好一件事就好,把深度学习,作为一个目标,去维护,事实上现在很多小圈子都在这样做,所有我也希望我们能有一片好的环境! No.1 首先我们来定义一下这个群,这个群,叫做Android进阶深度学习群,从群的名字就可以看出 进阶 | 深度 | 学习 ,三点,何谓…
过滤器(卷积核) 传统的图像过滤器算子有以下几种: blur kernel:减少相邻像素的差异,使图像变平滑. sobel:显示相邻元素在特定方向上的差异. sharpen :强化相邻像素的差异,使图片看起来更生动. outline:也称为edge kernel,相邻像素相似亮度的像素点设成黑,有较大差异的设为白. 更多可参考 image-kernels 在线演示不同的卷积过滤器. CNN 卷积层 CNN做的事情不是提前决定好过滤器,而是把过滤器当成参数不断调整学习,学出合适的过滤器.卷积网络的…
原文链接:https://yq.aliyun.com/topic/111 本文是对原文内容中部分概念的摘取记录,可能有轻微改动,但不影响原文表达. 01 - 一入侯门"深"似海,深度学习深几许 什么是"学习"? "如果一个系统,能够通过执行某个过程,就此改进了它的性能,那么这个过程就是学习". 学习的核心目的,就是改善性能. 什么是机器学习? 定义1: 对于计算机系统而言,通过运用数据及某种特定的方法(比如统计的方法或推理的方法),来提升机器系统…
注:因为毕业论文需要用到相关知识,借着 TF 2.0 发布的时机,重新捡起深度学习.在此,也推荐一下优达学城与 TensorFlow 合作发布的TF 2.0入门课程,下面的例子就来自该课程. 原文发布于博客园:https://www.cnblogs.com/Belter/p/10626418.html 本文中所有代码都在文末第二个链接中,转载请注明出处! 机器学习与深度学习 深度学习是机器学习的一个分支,当下也是该领域发展最快.最受关注的一个分支.上周刚刚公布的2018年图灵奖就颁发给了对深度学…
深度学习   深度学习学习目标: 1. TensorFlow框架的使用 2. 数据读取(解决大数据下的IO操作) + 神经网络基础 3. 卷积神经网络的学习 + 验证码识别的案例   机器学习与深度学习的区别 机器学习与深度学习的区别 1 特征提取方面 2 数据量和计算性能要求    3 算法代表 例如: 机器学习: 数据输入 –> 人工进行特征工程(需要大量专业领域知识) –> 分类算法计算 –> 得出结论 深度学习: 数据数据 –> 神经网络(通过将数据进行层层传递创建模型,自…
Unity提供了很多Image Effect效果,包含Global Fog.DOF.Boom.Blur.Edge Detection等等,这些效果里面都会使用到摄像机深度或者根据深度还原世界坐标实现各种效果,这篇文章主要介绍Unity中获取相机深度的方式. 1. Camera Image Effect Image Effect是Post Effect中的一种方式,Camera GameObject脚本上挂在脚本带有OnImageRender来实现, 具体实现参考Unity官网说明. 对于深度纹理…
2016年被称为人工智能的元年,2017年是人能智能应用的元年:深度学习技术和应用取得飞速发展:深度学习在互联网教育场景也得到广泛应用.本文主要介绍机器学习及深度学习之定义及基本概念.相关网络结构等. 本文主要内容包括机器学习的定义及组成分类.深度学习的定义.深度学习和机器学习的区别.神经网络基本概念及基本结构.深度学习的相关核心概念(基本假设.数据集.表示.泛化.容量.优化.超参数.误差.欠拟合.过拟合.正则化).两种典型深度网络结构(CNN.RNN)基本介绍. 引言 人工智能究竟能够做什么?…
opencv中图像的格式Mat 有图像的定义,图像深度.类型格式等,其中Mat的参数depth为深度,深度反应出图像颜色像素值: 关于数据的储存:(转) Mat_<uchar>对应的是CV_8U,Mat_<char>对应的是CV_8S,Mat_<int>对应的是CV_32S,Mat_<float>对应的是CV_32F,Mat_<double>对应的是CV_64F,对应的数据深度如下: • CV_8U - 8-bit unsigned intege…
深度分页 深度分页是指给搜索结果指定一个很大的起始位移. 普通分页在给定一个大的起始位移时效率十分低下,例如start=1000000,rows=10的查询,搜索引擎需要找到前1000010条记录然后再返回最后10条.Solr为了最后10条记录只会检索排序字段,但是前1000010条记录的内部排序开销依然十分大. 普通分页基础上的深度分页对分布式搜索引擎而言甚至是更低效的,因为为了找到正确的10条记录,来自各个分片的前1000010条记录的排序字段需要被返回和聚合在一个聚合节点.   使用cur…
参考链接: https://blog.csdn.net/v_xchen_v/article/details/79380222 前面说到了渲染队列,对于两个不透明的物体A和B,它们处于同一个渲染队列中.假如它们一前一后地摆放着,当先渲染A再渲染B,那么B显示在前面:当先渲染B再渲染A,那么A显示在前面.因此,单靠渲染队列还是无法很好解决物体间的遮挡关系,这时就需要利用深度这个东西了. 1.深度 指该像素距离摄像机的距离.离摄像机越远,深度越大. 2.深度缓冲 & 颜色缓冲 深度缓冲中存储着每个像素…
本文转载自:http://www.17bigdata.com/97-5%E5%87%86%E7%A1%AE%E7%8E%87%E7%9A%84%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0%E4%B8%AD%E6%96%87%E5%88%86%E8%AF%8D%EF%BC%88%E5%AD%97%E5%B5%8C%E5%85%A5bi-lstmcrf%EF%BC%89.html 摘要 深度学习当前在NLP领域发展也相当快,翻译,问答,摘要等基本都被深度学习占领了. 本文…
写在前面 上一节我们使用AssImp载入了3d模型,效果已经令人激动了.可是绘制效率和场景真实感还存在不足,接下来我们还是要保持耐心,继续学习一些高级主题,等学完后面的高级主题,我们再次来改进我们载入模型的过程. 本节将会学习深度測试.文中演示样例程序源码均能够在我的github下载. 本节内容整理自 1.www.learnopengl.com Depth testing 2.depth buffer faq 3.Z buffer 和 W buffer 簡介 通过本节能够了解到 为什么须要深度缓…
CNN(卷积神经网络).RNN(循环神经网络).DNN(深度神经网络) CNN 专门解决图像问题的,可用把它看作特征提取层,放在输入层上,最后用MLP 做分类. RNN 专门解决时间序列问题的,用来提取时间序列信息,放在特征提取层(如CNN)之后. DNN 说白了就是 多层网络,只是用了很多技巧,让它能够 deep .   什么是深度学习 深度学习=深度神经网络+机器学习 人工智能 > 机器学习 > 表示学习 > 深度学习   神经元模型 输入信号.加权求和.加偏置.激活函数.输出 全连…
目前深度图像的获取方法有激光雷达深度成像法,计算机立体视觉成像,坐标测量机法,莫尔条纹法,结构光法等等,针对深度图像的研究重点主要集中在以下几个方面,深度图像的分割技术 ,深度图像的边缘检测技术 ,基于不同视点的多幅深度图像的配准技术,基于深度数据的三维重建技术,基于三维深度图像的三维目标识别技术,深度图像的多分辨率建模和几何压缩技术等等,在PCL 中深度图像与点云最主要的区别在于  其近邻的检索方式的不同,并且可以互相转换. (这一章是我认为非常重要的) 模块RangeImage相关概念以及算…
(1)点云到深度图与可视化的实现 区分点云与深度图本质的区别 1.深度图像也叫距离影像,是指将从图像采集器到场景中各点的距离(深度)值作为像素值的图像.获取方法有:激光雷达深度成像法.计算机立体视觉成像.坐标测量机法.莫尔条纹法.结构光法. 2.点云:当一束激光照射到物体表面时,所反射的激光会携带方位.距离等信息.若将激光束按照某种轨迹进行扫描,便会边扫描边记录到反射的激光点信息,由 于扫描极为精细,则能够得到大量的激光点,因而就可形成激光点云.点云格式有*.las ;*.pcd; *.txt等…
原文: https://blogs.msdn.microsoft.com/shawnhar/2009/02/18/depth-sorting-alpha-blended-objects/ 翻译:李现民 最后修改:2012-07-03 “为什么我的透明物体的绘制顺序是错误的,或者为什么它们的一部分不见了?” 当绘制一个3D场景的时候,将图形按深度排序非常重要,只有这样靠近摄像机的物体才能被绘制在(离摄像机)更远的物体的上面.我们不会希望远方的山脉被绘制在近在眼前的建筑物的上面! 当前得到广泛应用的…