(c语言描述 函数递归汉诺塔)】的更多相关文章

递归:汉诺塔 让编程改变世界 Change the world by program 似乎谈到递归算法就要拿汉诺塔来举例,没办法,因为小甲鱼小时候太笨了,这个游戏老是玩不过关,好不容易在自学编程的时候,也卡在这里好长一段时间,所以现在老爱拿汉诺塔来说事儿. 一位法国数学家曾编写过一个印度的古老传说:说的是,在世界中心贝拿勒斯的圣庙里边,有一块黄铜板,上边插着三根宝针.印度教的主神梵天在创造世界的时候,在其中一根针上从下到上地穿好了由大到小的64片金片,这就是所谓的汉诺塔.然后不论白天或者黑夜,总…
函数不能嵌套定义,但能嵌套调用(在调用一个函数的过程中再调用另一个函数) 函数间接或直接调用自己,称为递归调用  汉诺塔问题 思想:简化为较为简单的问题 n=2 较为复杂的问题,采用数学归纳方法分析 递归什么时候终止:只剩一个圆盘的情况    A--到--B 费波纳茨数列 根据最大公约数的如下3条性质,采用递归法编写计算最大公约数的函数Gcd(),在主函数中调用该函数计算并输出从键盘任意输入的两正整数的最大公约数.性质1  如果a>b,则a和b与a-b和b的最大公约数相同,即Gcd(a, b)…
汉诺塔的传说 法国数学家爱德华·卢卡斯曾编写过一个印度的古老传说:在世界中心贝拿勒斯(在印度北部)的圣庙里,一块黄铜板上插着三根宝石针.印度教的主神梵天在创造世界的时候,在其中一根针上从下到上地穿好了由大到小的64片金片,这就是所谓的汉诺塔.不论白天黑夜,总有一个僧侣在按照下面的法则移动这些金片:一次只移动一片,不管在哪根针上,小片必须在大片上面.僧侣们预言,当所有的金片都从梵天穿好的那根针上移到另外一根针上时,世界就将在一声霹雳中消灭,而梵塔.庙宇和众生也都将同归于尽. 不管这个传说的可信度有…
汉诺塔问题 汉诺塔的移动可以用递归函数非常简单地实现.请编写move(n, a, b, c)函数,它接收参数n,表示3个柱子A.B.C中第1个柱子A的盘子数量,然后打印出把所有盘子从A借助B移动到C的方法. 汉诺塔问题的实现关键是理解递归的本质.递归问题的关键个人认为是,重目的而略过程.利用递归,我们不需要了解搬移盘子的过程.只需要知道,我们的目的是按照顺序和规则把盘子从A柱放到C柱.于是编写一个函数,move(n, a, b, c).可以这样理解:move(盘子数量, 起点, 缓冲区, 终点)…
程序调用自身的编程技巧称为递归. //汉诺塔的游戏,n为圆盘编号数量,编号,a,b,c代表的是三个柱子 var hanio=function(n,a,b,c){     if(n>0){         hanio(n-1,a,c,b);         document.writeln('Move n '+n+" form "+a+' to '+c);         document.write("<br />");         hanio…
# 汉诺塔 a = "A" b = "B" c = "C" def hano(a, b, c, n): if n == 1: print("{} --> {}".format(a, c)) if n == 2: print("{} --> {}".format(a, c)) print("{} --> {}".format(a, b)) print("{} -…
运行效果: 源代码: 1 # -*- coding:utf-8 -*- 2 ##汉诺塔游戏开始 3 _times=0 #用于统计移动次数 4 def hannuota(nlist,mfrom,mpass,mto): 5 global _times 6 n=len(nlist) 7 if n==1: 8 _times+=1 9 print('%-8d'%_times,nlist[0],':',mfrom,'--------->',mto) 10 else: 11 hannuota(nlist[:n…
取自coursera.org上公开课北京大学<C程序设计进阶> 递归调用注意的点 1.关注点放在求解的目标上,递推是,目标放在开头 2.找到第N次和第(N-1)次之间的关系,通项公式 3.给出边界(比如第1次执行结果,斐波那契数列是第1次和第2次结果) #include <iostream> using namespace std; void move(int m,char x, char y,char z) { ) { cout<<"把一个盘子从"…
汉诺塔问题 难度级别:B: 运行时间限制:1000ms: 运行空间限制:51200KB: 代码长度限制:2000000B 试题描述 经典的汉诺塔游戏相信很多同学都会玩的,规则就不用赘述,百科一下就OK.有三个柱子A,B,C,A柱子上套有n个大小不等的盘子,任意两个盘子,上面的盘子一定小于下面的盘子.现在请你编写程序计算如何将这n个盘子按照规则移到C柱子上,每次只能移动一个盘子,移动过程中可以借助B柱子,任意状态,各个柱子的盘子必须小盘在放在大盘子上面.现在输入两个正整数n和m,表示有n个盘子,请…
题目描述 古老的汉诺塔问题是这样的:用最少的步数将N个半径互不相等的圆盘从1号柱利用2号柱全部移动到3号柱,在移动的过程中小盘要始终在大盘的上面. 现在再加上一个条件:不允许直接把盘从1号柱移动到3号柱,也不允许直接把盘从3号柱移动到1号柱. 把盘按半径从小到大用1到N编号.每种状态用N个整数表示,第i个整数表示i号盘所在的柱的编号.则N=2时的移动方案为: (1,1)=>(2,1)=>(3,1)=>(3,2)=>(2,2)=>(1,2)=>(1,3)=>(2,3…