漫谈 Clustering (1): k-means】的更多相关文章

转:http://blog.pluskid.org/?p=287 如果说 K-means 和 GMM 这些聚类的方法是古代流行的算法的话,那么这次要讲的 Spectral Clustering 就可以算是现代流行的算法了,中文通常称为“谱聚类”.由于使用的矩阵的细微差别,谱聚类实际上可以说是一“类”算法. Spectral Clustering 和传统的聚类方法(例如 K-means)比起来有不少优点: 和 K-medoids 类似,Spectral Clustering 只需要数据之间的相似度…
由于总是有各种各样的杂事,这个系列的文章竟然一下子拖了好几个月,(实际上其他的日志我也写得比较少),现在决定还是先把这篇降维的日志写完.我甚至都以及忘记了在这个系列中之前有没有讲过“特征”(feature)的概念了,这里不妨再稍微提一下.机器学习应用到各个领域里,会遇到许多不同类型的数据要处理:图像.文本.音频视频以及物理.生物.化学等实验还有其他工业.商业以及军事上得到的各种数据,如果要为每一种类型的数据都设计独立的算法,那显然是非常不现实的事,因此,机器学习算法通常会采用一些标准的数据格式,…
上一次我们了解了一个最基本的 clustering 办法 k-means ,这次要说的 k-medoids 算法,其实从名字上就可以看出来,和 k-means 肯定是非常相似的.事实也确实如此,k-medoids 可以算是 k-means 的一个变种. k-medoids 和 k-means 不一样的地方在于中心点的选取,在 k-means 中,我们将中心点取为当前 cluster 中所有数据点的平均值: Rough Collie 并且我们已经证明在固定了各个数据点的 assignment 的情…
上一次我们谈到了用 k-means 进行聚类的方法,这次我们来说一下另一个很流行的算法:Gaussian Mixture Model (GMM).事实上,GMM 和 k-means 很像,不过 GMM 是学习出一些概率密度函数来(所以 GMM 除了用在 clustering 上之外,还经常被用于 density estimation ),简单地说,k-means 的结果是每个数据点被 assign 到其中某一个 cluster 了,而 GMM 则给出这些数据点被 assign 到每个 clust…
好久没有写 blog 了,一来是 blog 下线一段时间,而租 DreamHost 的事情又一直没弄好:二来是没有太多时间,天天都跑去实验室.现在主要折腾 Machine Learning 相关的东西,因为很多东西都不懂,所以平时也找一些资料来看.按照我以前的更新速度的话,这么长时间不写 blog 肯定是要被闷坏的,所以我也觉得还是不定期地整理一下自己了解到的东西,放在 blog 上,一来梳理总是有助于加深理解的,二来也算共享一下知识了.那么,还是从 clustering 说起吧. Cluste…
转自http://blog.pluskid.org/?p=287 如果说 K-means 和 GMM 这些聚类的方法是古代流行的算法的话,那么这次要讲的 Spectral Clustering 就可以算是现代流行的算法了,中文通常称为“谱聚类”.由于使用的矩阵的细微差别,谱聚类实际上可以说是一“类”算法. Spectral Clustering 和传统的聚类方法(例如 K-means)比起来有不少优点: 和 K-medoids 类似,Spectral Clustering 只需要数据之间的相似度…
KNN K-Means 1.分类算法 聚类算法 2.监督学习 非监督学习 3.数据类型:喂给它的数据集是带label的数据,已经是完全正确的数据 喂给它的数据集是无label的数据,是杂乱无章的,经过聚类后才变得有点顺序,先无序,后有序 4.训练过程:没有明显的前期训练过程,属于memory-based learning 有明显的前期训练过程 5.K的含义:来了一个样本x,要给它分类,即求出它的y,就从数据集中,在x附近找离它最近的K个数据点,这K个数据点,类别c占的个数最多,就把x的label…
Expectation Maximization (EM) 是一种以迭代的方式来解决一类特殊最大似然 (Maximum Likelihood) 问题的方法,这类问题通常是无法直接求得最优解,但是如果引入隐含变量,在已知隐含变量的值的情况下,就可以转化为简单的情况,直接求得最大似然解. 我们会看到,上一次说到的 Gaussian Mixture Model 的迭代求解方法可以算是 EM 算法最典型的应用,而最开始说的 K-means 其实也可以看作是 Gaussian Mixture Model…
在接下去说其他的聚类算法之前,让我们先插进来说一说一个有点跑题的东西:Vector Quantization.这项技术广泛地用在信号处理以及数据压缩等领域.事实上,在 JPEG 和 MPEG-4 等多媒体压缩格式里都有 VQ 这一步. Vector Quantization 这个名字听起来有些玄乎,其实它本身并没有这么高深.大家都知道,模拟信号是连续的值,而计算机只能处理离散的数字信号,在将模拟信号转换为数字信号的时候,我们可以用区间内的某一个值去代替着一个区间,比如,[0, 1) 上的所有值变…
系列不小心又拖了好久,其实正儿八经的 blog 也好久没有写了,因为比较忙嘛,不过觉得 Hierarchical Clustering 这个话题我能说的东西应该不多,所以还是先写了吧(我准备这次一个公式都不贴  ).Hierarchical Clustering 正如它字面上的意思那样,是层次化的聚类,得出来的结构是一棵树,如右图所示.在前面我们介绍过不少聚类方法,但是都是“平坦”型的聚类,然而他们还有一个更大的共同点,或者说是弱点,就是难以确定类别数.实际上,(在某次不太正式的电话面试里)我曾…
K-means是一种聚类算法: 这里运用k-means进行31个城市的分类 城市的数据保存在city.txt文件中,内容如下: BJ,2959.19,730.79,749.41,513.34,467.87,1141.82,478.42,457.64TianJin,2459.77,495.47,697.33,302.87,284.19,735.97,570.84,305.08HeBei,1495.63,515.90,362.37,285.32,272.95,540.58,364.91,188.63…
参考: 2.3. Clustering 2.4. Biclustering 2.1.2.3. The Dirichlet Process Clusering, GMM, Variational Inference, The Dirchlet Process 这是一个学习渐进的过程,那么,就先从聚类开始. From: 漫谈 Clustering 系列 K-means 那么计算机要如何来完成这个任务呢?当然,计算机还没有高级到能够“通过形状大致看出来”,不过,对于这样的 N 维欧氏空间中的点进行聚类…
目录: 1.问题描述 2.问题转化 3.划分准则 4.总结 1.问题描述 谱聚类(Spectral Clustering, SC)是一种基于图论的聚类方法——将带权无向图划分为两个或两个以上的最优子图(sub-Graph),使子图内部尽量相似,而子图间距离尽量距离较远,以达到常见的聚类的目的. 对于图的相关定义如下: 对于无向图G = (V,E),V表示顶点集合,即样本集合,即一个顶点为一个样本:E表示边集合. 设样本数为n,即顶点数为n. 权重矩阵:W,为n*n的矩阵,其值wi,j为各边的权值…
一.聚类的概念 聚类分析是在数据中发现数据对象之间的关系,将数据进行分组,组内的相似性越大,组间的差别越大,则聚类效果越好.我们事先并不知道数据的正确结果(类标),通过聚类算法来发现和挖掘数据本身的结构信息,对数据进行分簇(分类).聚类算法的目标是,簇内相似度高,簇间相似度低 二.基本的聚类分析算法 1. K均值(K-Means): 基于原型的.划分的距离技术,它试图发现用户指定个数(K)的簇. 2. 凝聚的层次距离: 思想是开始时,每个点都作为一个单点簇,然后,重复的合并两个最靠近的簇,直到尝…
Unsupervised deep embedding for clustering analysis 偶然发现这篇发在ICML2016的论文,它主要的关注点在于unsupervised deep embedding.据我所了解的,Unsupervised 学习是deep learning的一个难点,毕竟deep network这种非常复杂的非线性映射,暂时的未知因素太多,可能在原来的domain有clustering的特征数据经过nonlinear映射之后,就变得不再clustering了.…
聚类(Clustering) 非监督学习:简介(Unsupervised Learning: Introduction) 本章节介绍聚类算法,这是我们学习的第一个非监督学习算法--学习无标签数据,而不是此前的有标签数据. 什么是非监督学习?与监督学习对比 监督学习,有标签的训练集,目标是找到区分正负样本的决策边界,需要据此拟合一个假设函数. 非监督学习,数据无任何标签.也就是,将一系列无标签训练数据,输入算法,然后算法自动为我们寻找出这些数据内在的结构.下图的数据看起来可以分成两个分开的点集(称…
前言 主体思想:深度聚类需要考虑数据内在信息以及结构信息. 考虑自身信息采用 基础的 Autoencoder ,考虑结构信息采用 GCN. 1.介绍 在现实中,将结构信息集成到深度聚类中通常需要解决以下两个问题. 1.在深度聚类中应该考虑哪些结构性信息? 结构信息表明了数据样本之间潜在的相似性.不仅需要考虑低阶信息还需要考虑高阶信息. 2.结构信息与深度聚类之间的关系是什么? 深度聚类的基本组成部分是深度神经网络(DNN),例如  Autoencoder.Autoencoder  由多层结构组成…
论文信息 论文标题:CGC: Contrastive Graph Clustering for Community Detection and Tracking论文作者:Namyong Park, Ryan Rossi, Eunyee Koh, Iftikhar Ahamath Burhanuddin, Sungchul Kim, Fan Du, Nesreen Ahmed, Christos Faloutsos论文来源:2022, AAAI论文地址:download 论文代码:download…
Annie19921223的博客 [转载]用MATLAB做聚类分析 http://blog.sina.com.cn/s/blog_9f8cf10d0101f60p.html Free Mind 漫谈 Clustering 系列 http://blog.pluskid.org/?page_id=78 Roger Jang (張智星) Data Clustering and Pattern Recognition (資料分群與樣式辨認) http://mirlab.org/jang/books/dc…
1.题目分析: 查找无序数组中的第K大数,直观感觉便是先排好序再找到下标为K-1的元素,时间复杂度O(NlgN).在此,我们想探索是否存在时间复杂度 < O(NlgN),而且近似等于O(N)的高效算法. 还记得我们快速排序的思想麽?通过“partition”递归划分前后部分.在本问题求解策略中,基于快排的划分函数可以利用“夹击法”,不断从原来的区间[0,n-1]向中间搜索第k大的数,大概搜索方向见下图: 2.参考代码: #include <cstdio> #define swap(x,y…
多校联赛第一场(hdu4862) Jump Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 644    Accepted Submission(s): 275 Problem Description There are n*m grids, each grid contains a number, ranging from 0-9.…
Return an array of ones with the same shape and type as a given array. Parameters: a : array_like The shape and data-type of a define these same attributes of the returned array. dtype : data-type, optional Overrides the data type of the result. New…
Bisecting k-means(二分K均值算法) 二分k均值(bisecting k-means)是一种层次聚类方法,算法的主要思想是:首先将所有点作为一个簇,然后将该簇一分为二.之后选择能最大程度降低聚类代价函数(也就是误差平方和)的簇划分为两个簇.以此进行下去,直到簇的数目等于用户给定的数目K为止.        以上隐含着一个原则是:因为聚类的误差平方和能够衡量聚类性能,该值越小表示数据点月接近于它们的质心,聚类效果就越好.所以我们就需要对误差平方和最大的簇进行再一次的划分,因为误差平…
From: 2.3.5 Clustering - Spectral clustering From: 漫谈 Clustering (4): Spectral Clustering From: 漫谈 Clustering (番外篇): Dimensionality Reduction 传统方式的弊端 事实上,Laplacian Eigenmap (拉普拉斯特征映射) 假设数据分布在一个嵌套在高维空间中的低维流形上, Laplacian Matrix  则是流形的 Laplace Beltrami…
笔记转载于GitHub项目:https://github.com/NLP-LOVE/Introduction-NLP 10. 文本聚类 正所谓物以类聚,人以群分.人们在获取数据时需要整理,将相似的数据归档到一起,自动发现大量样本之间的相似性,这种根据相似性归档的任务称为聚类. 10.1 概述 聚类 聚类(cluster analysis )指的是将给定对象的集合划分为不同子集的过程,目标是使得每个子集内部的元素尽量相似,不同子集间的元素尽量不相似.这些子集又被称为簇(cluster),一般没有交…
    本稿为初稿,后续可能还会修改:如果转载,请务必保留源地址,非常感谢! 博客园:http://www.cnblogs.com/data-miner/ 其他:建设中- 当我们在谈论kmeans(2) 引言 上一篇文章,对从1969年以来,与kmeans相关文章的数据进行了简单描述,并对其中某些数据趋势尝试分析.这属于对数据的整体情况的一个简要分析. 本篇文章,则希望能通过简单介绍kmeans一路以来一些重要或者有意义的文章,进而能大概梳理出该算法的发展进程. 算法含有的问题 算法历程 196…
http://scikit-learn.org/stable/modules/clustering.html#k-means http://my.oschina.net/u/175377/blog/84420 K-Means clustering参数说明: http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html#sklearn.cluster.KMeans class sklearn.cluster…
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Drawing; using System.Drawing.Imaging; namespace ConsoleApplication1 { class Program { static void Main(string[] args) { Random random = new Random(Mat…
转自:http://blog.csdn.net/abcjennifer/article/details/8198352 在聚类算法K-Means, K-Medoids, GMM, Spectral clustering,Ncut一文中我们给出了GMM算法的基本模型与似然函数,在EM算法原理中对EM算法的实现与收敛性证明进行了详细说明.本文主要针对如何用EM算法在混合高斯模型下进行聚类进行代码上的分析说明. 1. GMM模型: 每个 GMM 由 K 个 Gaussian 分布组成,每个 Gauss…
大数据,人人都说大数据:类似于人人都知道黄晓明跟AB结婚一样,那么什么是大数据?对不起,作为一个本科还没毕业的小白实在是无法回答这个问题.我只知道目前研究的是高维,分布在n远远大于2的欧式空间的数据如何聚类.今年的研究生数模中用大数据引出了一个国内还不怎么火热的概念——多流形结构.题目中那个给出的流形概念:流形是局部具有欧氏空间性质的空间,欧氏空间就是流形最简单的实例.从而在2000年提出了多流形学习:基于数据均匀采样于一个高维欧氏空间中的低维流形的假设,流形学习试图学习出高维数据样本空间中嵌入…