Sumdiv 题目连接: http://poj.org/problem?id=1845 Description Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. Determine S modulo 9901 (the rest of the division of S by 9901). Input The only line contains the two natur…
题目链接:http://poj.org/problem?id=1845 题目大意:给出两个自然数a,b,求a^b的所有自然数因子的和模上9901 (0 <= a,b <= 50000000) 解题思路:我们先利用唯一分解定理,将a分解成(p1^q1)*(p2^q2)……(pk^qk)的形式,则a^b=((p1^q1)*(p2^q2)……(pk^qk))^b=(p1^q1b)*(p2^q2b)……(pk^qkb) a^b的因子和就会等于(1+p1+p1^2+……p1^q1b)*(1+p2+p2^…
筛选法+求一个整数的分解+快速模幂运算+递归求计算1+p+p^2+````+p^nPOJ 1845 Sumdiv求A^B的所有约数之和%9901 */#include<stdio.h>#include<math.h>#include<iostream>#include<algorithm>#include<string.h>using namespace std;#define MOD 9901const int MAXN=10000;int p…
题目: 求AB的正约数之和. 输入: A,B(0<=A,B<=5*107) 输出: 一个整数,AB的正约数之和 mod 9901. 思路: 根据正整数唯一分解定理,若一个正整数表示为:A=p1^c1 * p2^c2 * ...... pm^cm 则其正约数之和可以表示为:S=(1+p1+p1^2+......p1^c1)*(1+p2+p2^2+......p2^c2)*......(1+pm+pm^2+......pm^cm) 那么AB就可以表示为:S'=(1+p1+p1^2+......p1…
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1452 题目大意:求2004^X所有约数和,结果mod 29. 解题思路: ①整数唯一分解定理: 一个整数A一定能被分成:A=(P1^K1)*(P2^K2)*(P3^K3).....*(Pn^Kn)的形式.其中Pn为素数. 如2004=(22)*3*167. 那么2004x=(22x)*(3x)*(167x). ②约数和公式 对于一个已经被分解的整数A=(P1^K1)*(P2^K2)*(P3^K3)…
当我们拆分完数据以后, A^B的所有约数之和为: sum = [1+p1+p1^2+...+p1^(a1*B)] * [1+p2+p2^2+...+p2^(a2*B)] *...*[1+pn+pn^2+...+pn^(an*B)]. 当时面对等比数列的时候,想到了求和公式,因为直接算超时了,但是带膜除法不能直接除,所以又想到了乘法逆元,但是逆元的使用条件是除数和mod互质的时候,题目给我们的膜不够大,然后我就方了,不知道该怎么去处理了,后来看到网上,才学会了等比快速求和的方法. 它的思想是二分法…
题意:给你A,B,让求A^B所有的因子和模上9901 思路:A可以拆成素因子的乘积: A = p1^x1 * p2^x2 *...* pn^xn 那么A^B = p1^(B*x1) * p2^(B*x2) *...* pn^(B*xn) 那么A^B所有的素因子和就是 (p1^0 + p1^1 + p1^2 + ... + p1^(B*x1) ) * (p2^0 + p2^1 + ... + p2^(B*x2) ) * ... * (pn^0 + pn^1 + ... + pn^(B*xn)) 可…
题意: 给出数字A和B,要求AB的所有因子(包括AB和1)之和 mod 9901 的结果. 思路: 即使知道公式也得推算一阵子. 很容易知道,先把分解得到,那么得到,那么的所有因子之和的表达式如下: 我们要做的就是计算出sum%9901的结果. 有两种方法: (1)直接用快速幂计算对上面sum的第一步推算求结果,在计算过程中顺便取模. (2)可以根据以下这条公式对上面sum的第二步推算求结果: 也是需要用到快速幂,过程也稍微复杂了些.注意 mb 可能会超过int. 以下是第二种方法的代码: //…
任意门:http://poj.org/problem?id=1845. Sumdiv Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 30268 Accepted: 7447 Description Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. Determine S modulo 9901 (the…
题目链接:Sumdiv 题意:给定两个自然数A,B,定义S为A^B所有的自然因子的和,求出S mod 9901的值. 题解:了解下以下知识点   1.整数的唯一分解定理 任意正整数都有且只有唯一的方式写出其质因子的乘积表达式 $A={p_1}^{k_1}*{p_2}^{k_2}*{p_3}^{k_3}*...*{p_n}^{k_n}$ 2.整数因数个数 $B=(k_1+1)*(k_2+1)*(k_3+1)...*(k_n+1)$ 3.整数因数总和 $S=(1+p_1+p_1^2+p_1^3+..…