NMS_非极大值抑制(转)】的更多相关文章

NMS(non maximum suppression),中文名非极大值抑制,在很多计算机视觉任务中都有广泛应用,如:边缘检测.目标检测等. 这里主要以人脸检测中的应用为例,来说明NMS,并给出Matlab示例程序. 人脸检测的一些概念 (1) 绝大部分人脸检测器的核心是分类器,即给定一个尺寸固定图片,分类器判断是或者不是人脸: (2)将分类器进化为检测器的关键是:在原始图像上从多个尺度产生窗口,并resize到固定尺寸,然后送给分类器做判断.最常用的方法是滑动窗口. 以下图为例,由于滑动窗口,…
概述 非极大值抑制(Non-Maximum Suppression,NMS),顾名思义就是抑制不是极大值的元素,可以理解为局部最大搜索.这个局部代表的是一个邻域,邻域有两个参数可变,一是邻域的维数,二是邻域的大小.这里不讨论通用的NMS算法(参考论文<Efficient Non-Maximum Suppression>对1维和2维数据的NMS实现),而是用于目标检测中提取分数最高的窗口的.例如在行人检测中,滑动窗口经提取特征,经分类器分类识别后,每个窗口都会得到一个分数.但是滑动窗口会导致很多…
非极大值抑制(Non-Maximum Suppression,NMS),顾名思义就是抑制不是极大值的元素,可以理解为局部最大搜索.也可以理解为只取置信度最高的一个识别结果. 举例:  如图所示,现在识别出了3个人脸,但该三个人脸其实都为同一个目标,只是位置不同,置信度也不一样. 这时候,我们想要是置信度最高的"0.97"的检测结果,以及位置信息. 那么,我们就可以采用NMS的方式,来得到我们想要的最后的结果. 原理: 对于Bounding Box的列表B及其对应的置信度S,采用下面的…
转自:https://www.cnblogs.com/makefile/p/nms.html 概述 非极大值抑制(Non-Maximum Suppression,NMS),顾名思义就是抑制不是极大值的元素,可以理解为局部最大搜索.这个局部代表的是一个邻域,邻域有两个参数可变,一是邻域的维数,二是邻域的大小.这里不讨论通用的NMS算法(参考论文<Efficient Non-Maximum Suppression>对1维和2维数据的NMS实现),而是用于目标检测中提取分数最高的窗口的.例如在行人检…
你如何判断对象检测算法运作良好呢?在这一节中,你将了解到并交比函数,可以用来评价对象检测算法. 一 并交比(Intersection over union ) 在对象检测任务中,你希望能够同时定位对象,所以如果实际边界框是这样的,你的算法给出这个紫色的边界框,那么这个结果是好还是坏?所以交并比(loU)函数做的是计算两个边界框交集和并集之比.两个边界框的并集是这个区域,就是属于包含两个边界框区域(绿色阴影表示区域),而交集就是这个比较小的区域(橙色阴影表示区域),那么交并比就是交集的大小,这个橙…
因为之前对比了RoI pooling的几种实现,发现python.pytorch的自带工具函数速度确实很慢,所以这里再对Faster-RCNN中另一个速度瓶颈NMS做一个简单对比试验. 这里做了四组对比试验,来简单验证不同方法对NMS速度的影响. 方法1:纯python语言实现:简介方便.速度慢 方法2:直接利用Cython模块编译 方法3:先将全部变量定义为静态类型,再利用Cython模块编译 方法4:在方法3的基础上再加入cuda加速模块, 再利用Cython模块编译,即利用gpu加速 一.…
如何判断对象检测算法运作良好呢? 一.交并比(Intersection over union,IoU) 是产生的候选框(candidate bound)与原标记框(ground truth bound)的交叠率,即它们的交集与并集的比值,理想情况下是完全重叠,即比值为1 一般约定,在计算机检测任务中,如果IoU≥0.5,就说检测正确.当然0.5只是约定阈值,你可以将IoU的阈值定的更高.IoU越高,边界框越精确. 二.非极大值抑制(Non-Maximum Suppression,NMS) 非极大…
非极大值抑制顾名思义就是抑制不是极大值的元素,搜索局部的极大值.这个局部代表的是一个邻域,邻域有两个参数可变,一个是邻域的维数,二是邻域的大小.这里不讨论通用的NMS算法,而是用于在目标检测中提取分数最高的窗口的.例如在行人检测中,滑动窗口经提取特征,经分类器分类识别后,每个窗口都会得到一个分数.但是滑动窗口会导致很多窗口与其他窗口存在包含或者大部分交叉的情况.这时就需要用到NMS来选取那些邻域里分数最高,并且抑制那些分数低的窗口. # import the necessary packages…
图像金字塔 1.在从cv2.resize中,传入参数时先列后行的 2.使用了python中的生成器,调用时使用for i in pyramid即可 3.scaleFactor是缩放因子,需要保证缩放后的图不小于最小尺寸,对应神经网络就是训练尺寸 '''图像金字塔''' def resize(img, scaleFactor): # cv2.resize先接收列后接收行,返回亦然 return cv2.resize(img, (int(img.shape[1] * (1/scaleFactor))…
非极大值抑制(Non-Maximum Suppression,NMS)   概述 非极大值抑制(Non-Maximum Suppression,NMS),顾名思义就是抑制不是极大值的元素,可以理解为局部最大搜索.这个局部代表的是一个邻域,邻域有两个参数可变,一是邻域的维数,二是邻域的大小.这里不讨论通用的NMS算法(参考论文<Efficient Non-Maximum Suppression>对1维和2维数据的NMS实现),而是用于目标检测中提取分数最高的窗口的.例如在行人检测中,滑动窗口经提…