Aizu:0005-GCD and LCM】的更多相关文章

题意:求两数最大公约数和最小公倍数. 类型:辗转相除法 算法:gcd(a,b)=gcd(b,a%b),lcm(a,b)=a*b/gcd(a,b). #include <cstdio> #include <iostream> using namespace std; int gcd(int a, int b) { for(int t; t = a % b; a = b, b = t); return b; } int main() { int a, b, g; long long l…
GCD & LCM Inverse Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 9928   Accepted: 1843 Description Given two positive integers a and b, we can easily calculate the greatest common divisor (GCD) and the least common multiple (LCM) of a a…
GCD and LCM Descriptions: Write a program which computes the greatest common divisor (GCD) and the least common multiple (LCM) of given a and b. Input Input consists of several data sets. Each data set contains a and b separated by a single space in…
GCD and LCM Time limit 1000 ms Memory limit 131072 kB Problem Description Write a program which computes the greatest common divisor (GCD) and the least common multiple (LCM) of given a and b. Input Input consists of several data sets. Each data set…
GCD and LCM Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=4497 Description Given two positive integers G and L, could you tell me how many solutions of (x, y, z) there are, satisfying that gcd(x, y, z) = G and…
题目链接: https://cn.vjudge.net/problem/23709/origin 本题其实有坑 数据大小太大, 2的32次方,故而一定是取巧的算法,暴力不可能过的 思路是最大公因数的倍数是最小公倍数,又有a <= b所以可以知道 a = gcd, b = lcm AC代码如下: #include <cstdio> #define ll long long using namespace std; int main() { int T; scanf("%d&quo…
并不重要的前言 最近学习了一些数论知识,但是自己都不懂自己到底学了些什么qwq,在这里把知识一并总结起来. 也不是很难的gcd和lcm 显而易见的结论: 为什么呢? 根据唯一分解定理: a和b都可被分解为素因子的乘积,形如: 则显而易见的有一下结论: 相乘,得: 得证 几种求gcd的算法 欧几里得算法(辗转相除法) 辗转相减法(优化:stein_gcd) 欧几里得算法 基于事实: 实现: int gcd(int a, int b){ ) ? a : gcd( b , a % b) ; } 简短而…
gcd即最大公约数,lcm即最小公倍数. 首先给出a×b=gcd×lcm 证明:令gcd(a,b)=k,a=xk,b=yk,则a×b=x*y*k*k,而lcm=x*y*k,所以a*b=gcd*lcm. 所以求lcm可以先求gcd,而求gcd的方法就是辗转相除法,也叫做欧几里德算法,核心为gcd(m,n)=gcd(n,m%n) 证明:令 k=gcd(m,n),则 k|m 并且 k|n; 令 j=gcd(n, m mod n), 则j|n 并且 j|(m mod n); 对于m, 可以用n 表示为…
GCD and LCM Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total Submission(s): 40    Accepted Submission(s): 22 Problem Description Given two positive integers G and L, could you tell me how many solutions of (x,…
GCD and LCM Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total Submission(s): 2982    Accepted Submission(s): 1305 Problem Description Given two positive integers G and L, could you tell me how many solutions of…
GCD and LCM Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total Submission(s): 3379    Accepted Submission(s): 1482 Problem Description Given two positive integers G and L, could you tell me how many solutions of…
这个题目挺不错的,看到是通化邀请赛的题目,是一个很综合的数论题目. 是这样的,给你三个数的GCD和LCM,现在要你求出这三个数有多少种可能的情况. 对于是否存在这个问题,直接看 LCM%GCD是否为0,如果不为0的话,就没有满足条件的数哦,反之一定有. 接下来问题等价于求三个数GCD为1,LCM为LCM/GCD的种类数了. 设这个商为X. 首先我们可以把X因数分解成X=(p1*x1)*(p2*x2)*……*(pn*xn): 单独拿出一个素数进行讨论,如果要设ABC分别为满足情况的三个数,那么Xa…
题目链接: https://cn.vjudge.net/problem/POJ-2429 题目大意: 给出两个数的gcd和lcm,求原来的这两个数(限定两数之和最小). 解题思路: 首先,知道gcd和lcm求原来的两个数,需要分解lcm / gcd .将其分解为互质的两个数. 首先将lcm/gcd质因数分解,要分解出沪互质两个数字,那么这两个数字的gcd=1,也就是没有公共的质因子,所以可以直接枚举这两个数字的质因子,如果一个数要取这个质因子,就把它的指数全部取掉. 质因数分解用大数因式分解来做…
WUSTOJ 1266: gcd和lcm 参考 1naive1的博客 Description   已知a,b的最大公约数为x,也即gcd(a,b)=x; a,b的最小公倍数为y,也即lcm(a,b)=y.给出x,y.求满足要求的a和b一共有多少种. Input   多组测试样例.每组给两个整数x,y.(1<=x<=100000,1<=y<=1000000000). Output   对于每个测试样例,输出一个整数,表示满足要求的(a,b)的种数. Sample Input 3 60…
GCD _ LCM 是给你两个数A B 的最大公约数, 以及最小公倍数 the greatest common divisor and the least common multiply ! 最大公约数最简单.最常见的算法,就是辗转相除法   : 假设 GCD(A , B) ; A / B = P ;  A % B = Q;  那么 A =  B P + Q; GCD(B, Q); GCD (A , B)  % GCD (B , Q) = 0     :  因为 A  的表达式当中包括了 B .…
HDU4497 GCD and LCM 如果 \(G \% L != 0\) ,那么输出 \(0\) . 否则我们有 \(L/G=(p_1^{r_1})\cdot(p_2^{r_2})\cdot(p_3^{r_3})\cdots(p_m^{r_m})\) . 我们又有: \[ x=(p_1^{i_1})\cdot(p_2^{i_2})\cdot(p_3^{i_3})\cdots(p_m^{i_m}) \\ y=(p_1^{j_1})\cdot(p_2^{j_2})\cdot(p_3^{j_3})…
Given two positive integers G and L, could you tell me how many solutions of (x, y, z) there are, satisfying that gcd(x, y, z) = G and lcm(x, y, z) = L? Note, gcd(x, y, z) means the greatest common divisor of x, y and z, while lcm(x, y, z) means the…
题意: GCD(a,b) + LCM(a,b) = n,已知 n ,求 a,b. 思路: 设 gcd(a, b) = k, a = xk, b = yk , k + ab / k = n xy = n/k - 1 令 k = 1 , 则 xy = n - 1 令 x = 1 , 则 y = n - 1 ∴ a = xk = 1 , b = yk = n-1 一定满足条件. #include <bits/stdc++.h> using namespace std; typedef long lo…
GCD and LCM Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total Submission(s): 2977    Accepted Submission(s): 1302 Problem Description Given two positive integers G and L, could you tell me how many solutions of…
组合数学 GCD and LCM Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total Submission(s): 451    Accepted Submission(s): 216 Problem Description Given two positive integers G and L, could you tell me how many solutions…
本文用来介绍 iOS 多线程中 GCD 的相关知识以及使用方法.这大概是史上最详细.清晰的关于 GCD 的详细讲解+总结的文章了.通过本文,您将了解到: 1. GCD 简介 2. GCD 任务和队列 3. GCD 的使用步骤 4. GCD 的基本使用(6种不同组合区别) 5. GCD 线程间的通信 6. GCD 的其他方法(栅栏方法:dispatch_barrier_async.延时执行方法:dispatch_after.一次性代码(只执行一次):dispatch_once.快速迭代方法:dis…
GCD and LCM Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others) Total Submission(s): 78 Accepted Submission(s): 43 Problem Description Given two positive integers G and L, could you tell me how many solutions of (x, y, z)…
gcd及扩展gcd可以用来求两个数的最大公因数,扩展gcd甚至可以用来求一次不定方程ax+by=c的解   辗转相除法与gcd 假设有两个数a与b,现在要求a与b的最大公因数,我们可以设 a=b*q+p 如果a是与b的最大公约数是gcd(a,b),那么b与p的最大公约数也是gcd(a,b) 即 gcd(a,b)=gcd(b,p)=gcd(b,a%b),然后我们令a=b,b=a%b,然后再进行以上步骤 以此类推,a与b的值会越来越小,直到某一时刻a变成了b的倍数,使得a%b=0,但是后来赋值使得a…
本文用来介绍 iOS 多线程中 GCD 的相关知识以及使用方法.这大概是史上最详细.清晰的关于 GCD 的详细讲解+总结的文章了.通过本文,您将了解到:1. GCD 简介2. GCD 任务和队列3. GCD 的使用步骤4. GCD 的基本使用(6种不同组合区别)5. GCD 线程间的通信6. GCD 的其他方法(栅栏方法:dispatch_barrier_async.延时执行方法:dispatch_after.一次性代码(只执行一次):dispatch_once.快速迭代方法:dispatch_…
GCD and LCM HDU 4497 数论 题意 给你三个数x,y,z的最大公约数G和最小公倍数L,问你三个数字一共有几种可能.注意123和321算两种情况. 解题思路 L代表LCM,G代表GCD. \[ x=(p_1^{i_1})*(p_2^{i_2})*(p_3^{i_3})\dots \] \[ y=(p_1^{j_1})*(p_2^{j_2})*(p_3^{j_3})\dots \] \[ z=(p_1^{k_1})*(p_2^{k_2})*(p_3^{k_3})\dots \] \…
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=2026 参考及推导:https://www.cnblogs.com/ivorysi/p/9157781.html (其公式有一处小问题,请注意.) 然后就没了……我觉得讲得挺详细了. 另外map跑得可能比哈希表还快可还行. #include<map> #include<cmath> #include<stack> #include<queu…
1.质数: 质数(prime number)又称素数,有无限个.一个大于1的自然数,除了1和它本身外,不能整除以其他自然数(质数),换句话说就是该数除了1和它本身以外不再有其他的因数. 2.约数: 如果一个整数能被两个整数整除,那么这个数就是着两个数的约数.约数是有限的,一般用最大公约数.例如 24的约数是1,2,3,4,6,8,12,24 3.计算约数和: 在数论中有种,把一个数分解成N个素数的积,再把这些素数的指数加一后,全部相乘的积就是约数的个数了. 例如:36 = 2^2 * 3^2 指…
题意:gcd(a,b,c)=g; lcm(a,b,c)=l; 求出符合的a,b,c的所有情况有多少中. 思路:l/g=p1^x1*p2^x2*p3^x3.....;   x/g=p1^a1*p2^a2*p3^a3.....; b/g=p1^b1*p2^b2*p3^b3.....; c/g=p1^c1*p2^c2*p3^c3.....; 在ai,bi,ci中至少有一个为0,至少有一个为x1,另一个的范围为0-x1:符合条件的方案数为 (x1+1)^3-(x1)^3-x1^3+(x1-1)^3; 总…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4497 题意:已知GCD(x, y, z) = G,LCM(x, y, z) = L.告诉你G.L,求满足要求的(x, y, z)有多少组,并且要考虑顺序. 思路:如果L%G != 0显然不存在这样的(x, y, z),相反肯定存在.具体做法就是将L/G分解质因子,得到:L/G = P1^t1 * P2^t2 * ... * Pk^tk,我们来考虑任意一个因子Pi^ti,此时(x/G, y/G, z/…
洛谷P1072:https://www.luogu.org/problemnew/show/P1072 思路 gcd(x,a0)=a1 lcm(x,b0)=b1→b0*x=b1*gcd(x,b0) (由a*b=gcd(a,b)*lcm(a,b)) x=(b1/b0)*gcd(x,b0) 令i=gcd(x,b0)∈[1,√b0] 分成两半求减少时间复杂度 特判相等的时候 判断x=(b1/b0)*i和x=(b1/b0)*(b0/i)是否满足条件 代码 #include<iostream> #inc…