MATLAB进行无约束优化】的更多相关文章

首先先给出三个例子引入fminbnd和fminuc函数求解无约束优化,对这些函数有个初步的了解 求f=2exp(-x)sin(x)在(0,8)上的最大.最小值. 例2 边长3m的正方形铁板,四角减去相等正方形,制成方形无盖水槽.怎样减使水槽容积最大. 解:列出目标函数(加负号,转化为求最小) min y=-((3-2x)^2)*x 例3 求多元函数最小值 minf(x)=exp(x(1))*(4*x(1)^2+2*x(2)^2+4*x(1)*x(2)+2*x(2)+1) 下面是MATLAB优化工…
此部分内容接<02(a)多元无约束优化问题>! 第二类:牛顿法(Newton method) \[f({{\mathbf{x}}_{k}}+\mathbf{\delta })\text{ }\approx \text{ }f({{\mathbf{x}}_{k}})+{{\nabla }^{T}}f({{\mathbf{x}}_{k}})\cdot \mathbf{\delta }+\frac{1}{2}{{\mathbf{\delta }}^{T}}\cdot {{\nabla }^{2}}f…
2.1 基本优化问题 $\operatorname{minimize}\text{    }f(x)\text{       for   }x\in {{R}^{n}}$ 解决无约束优化问题的一般步骤为: Step1:选择一个初始出点${{\mathbf{x}}_{0}}$(这里的${{\mathbf{x}}_{0}}$是向量),设置一个收敛误差$\varepsilon $(解的精度)和一个迭代次数$k=0$: Step2:找到从点${{\mathbf{x}}_{k}}$使函数$f(x)$下降最…
本文讲解的是无约束优化中几个常见的基于梯度的方法,主要有梯度下降与牛顿方法.BFGS 与 L-BFGS 算法. 梯度下降法是基于目标函数梯度的,算法的收敛速度是线性的,并且当问题是病态时或者问题规模较大时,收敛速度尤其慢(几乎不适用): 牛顿法是基于目标函数的二阶导数(Hesse 矩阵)的,其收敛速度较快,迭代次数较少,尤其是在最优值附近时,收敛速度是二次的.但牛顿法的问题在于当海森矩阵稠密时,每次迭代的计算量比较大,因为每次都会计算目标函数的海森矩阵的逆,这样一来,当数据维度较高时,不仅计算量…
此部分内容接02(a)多元无约束优化问题的内容! 第一类:最速下降法(Steepest descent method) \[f({{\mathbf{x}}_{k}}+\mathbf{\delta })\approx f({{\mathbf{x}}_{k}})+{{\nabla }^{T}}f({{\mathbf{x}}_{k}})\cdot \mathbf{\delta }\] 要使新找到的一点${{\mathbf{x}}_{k}}+\mathbf{\delta }$的函数值小于原来点${{\m…
1.解方程转化为优化问题 $n\left\{ \begin{aligned}& {{P}_{1}}(x)=0 \\ & {{P}_{2}}(x)=0 \\ & \text{   }\vdots  \\& {{P}_{n}}(x)=0 \\\end{aligned} \right.\text{              }x=\left[ \begin{aligned}  & {{x}_{1}} \\& {{x}_{2}} \\& \vdots  \\…
此部分内容接<02(a)多元无约束优化问题-牛顿法>!!! 第三类:拟牛顿法(Quasi-Newton methods) 拟牛顿法的下降方向写为: ${{\mathbf{d}}_{k}}=-{{\mathbf{S}}_{k}}\cdot \nabla f({{\mathbf{x}}_{k}})$ 关键就是这里的${{\mathbf{S}}_{k}}$,主要有两拨人对拟牛顿法做出了贡献他们分别针对${{\mathbf{S}}_{k}}$,提出了两种不同的方法:注:下式中的${{\mathbf{\…
2.1 求解梯度的两种方法 以$f(x,y)={{x}^{2}}+{{y}^{3}}$为例,很容易得到: $\nabla f=\left[ \begin{aligned}& \frac{\partial f}{\partial x} \\& \frac{\partial f}{\partial y} \\\end{aligned} \right]=\left[ \begin{aligned}& 2x \\& 3{{y}^{2}} \\\end{aligned} \right…
简介:最近在看逻辑回归算法,在算法构建模型的过程中需要对参数进行求解,采用的方法有梯度下降法和无约束项优化算法.之前对无约束项优化算法并不是很了解,于是在学习逻辑回归之前,先对无约束项优化算法中经典的算法学习了一下.下面将无约束项优化算法的细节进行描述.为了尊重别人的劳动成果,本文的出处是:http://blog.csdn.net/itplus/article/details/21896453 . 从这里我们可以看出:要想迭代出Xk+1,就只需要计算Dk+1即可.DFP算法是对Dk+1的一个近似…
命令行下运行 Matlab 及 函数 首先参考命令行下matlab的运行参数的定义与作用:http://www.cnblogs.com/beanocean/p/3677404.html 创建示例程序:test.m function test(x, y) fprintf(num2str(x+y)) end cmd下cd到test.m所在路径,输入如下命令: matlab -nojvm -nodesktop -nodisplay -r test 即可以简单界面形式启动matlab.查看任务管理器可发…
function [xv,fv] = myGA(fitness, a, b, NP, NG, Pc, Pm, eps) % 用遗传算法求解一维无约束优化问题 % % 待优化的目标函数 fitness % 自变量下界 a % 自变量上界 b % 种群个体数 NP % 最大进化代数 NG % 杂交概率 Pc % 变异概率 Pm % 自变量离散精度 eps % 目标变量取最大值时自变量的值: xm % 目标函数的最大值 fv % % Example: % function F = fitness(x)…
1 addpath 路径(相对应地,rmpath移除路径) addpath ../commonaddpath ../common/minFunc_2012/minFuncaddpath ../common/minFunc_2012/minFunc/compiled 也有括号形式的addpath(olderName1,...,folderNameN) 更多请点击 2 load('路径') ● load:如果matlab.mat文件存在,导入matlab.mat中的所有变量,如果不存在,则返回err…
引言 本篇文章将详解带有约束条件的最优化问题,约束条件分为等式约束与不等式约束,对于等式约束的优化问题,可以直接应用拉格朗日乘子法去求取最优值:对于含有不等式约束的优化问题,可以转化为在满足 KKT 约束条件下应用拉格朗日乘子法求解.拉格朗日求得的并不一定是最优解,只有在凸优化的情况下,才能保证得到的是最优解,所以本文称拉格朗日乘子法得到的为可行解,其实就是局部极小值,接下来从无约束优化开始一一讲解. 无约束优化 首先考虑一个不带任何约束的优化问题,对于变量 $ x \in \mathbb{R}…
今天做图像处理时,看到一个矩阵的处理,简要谈谈下面几段代码: 首先是介绍矩阵(说明:在matlab中无是数组还是矩阵都是按列来存储的) 首先是一些特殊矩阵的建立 zeros(m,n)%建立全0矩阵 ones(m,n)%建立全1矩阵 eye(m,n)%建立对角线全为1 的矩阵 rand(m,n)%(0,1)随机分布的矩阵 randn(m,n)%相比上一个,均值为0,方差为1 magic(m,n)%魔方矩阵 对于矩阵的建立和元素访问,很多和前面介绍的数组相同 下面看图访问矩阵 访问矩阵元素可以用单下…
关于插值原理,这篇文章里总结过. 插值,是在有限个数据点的情况下,模拟出更多的点来适应实际问题的需要. 拟合,是在已知数据点基础上,以已知点处最小误差为标准,模拟出近似函数. 二者有似,实则不同,matlab提供了基本完整的解决方案. 一.插值 1. 一维插值 (1)拉格朗日插值 经典的拉格朗日插值并没有现成的函数.自行编写如下: input: 相同维度的已知点x0,y0 output:x点处的插值y function y = lagrange(x0,y0,x) % 函数:已知点组(x0,y0)…
梯度下降法是一个最优化算法,通常也称为最速下降法.最速下降法是求解无约束优化问题最简单和最古老的方法之一,虽然现在已经不具有实用性,但是许多有效算法都是以它为基础进行改进和修正而得到的.最速下降法是用负梯度方向为搜索方向的,最速下降法越接近目标值,步长越小,前进越慢. 中文名 梯度下降 外文名 steepest descent (gradient descent) 用于 求解非线性方程组 类型 最优化算法 目录 1 简介 2 求解过程 3 例子 4 缺点 简介 梯度下降法(gradient de…
正态分布变换(NDT)算法是一个配准算法,它应用于三维点的统计模型,使用标准最优化技术来确定两个点云间的最优的匹配,因为其在配准过程中不利用对应点的特征计算和匹配,所以时间比其他方法快.下面的公式推导和MATLAB程序编写都参考论文:The Normal Distributions Transform: A New Approach to Laser Scan Matching 先回顾一下算法推导和实现过程中涉及到的几个知识点: 协方差矩阵 在概率论和统计中,协方差是对两个随机变量联合分布线性相…
对于了解机器学习中二元分类问题的来源与分析,我认为王树义老师这篇文章讲的非常好,通俗且易懂: http://blog.sciencenet.cn/blog-377709-1121098.html 但王树义老师的这篇文章并未详细的展开说明二元分类的具体实现方法,只是在宏观上的一个概述.在阅读这篇文章后,我便心生实现一个简单的二元分类并把前后过程记录下来的念头,所以本篇的主体以算法实现为主,略带分析,并不会涉及太多的理论知识.本篇以线性Logistic Regression为主要的模型工具来做一个简…
做机器学习的一定对支持向量机(support vector machine-SVM)颇为熟悉,因为在深度学习出现之前,SVM一直霸占着机器学习老大哥的位子.他的理论很优美,各种变种改进版本也很多,比如latent-SVM, structural-SVM等.这节先来看看SVM的理论吧,在(图一)中A图表示有两类的数据集,图B,C,D都提供了一个线性分类器来对数据进行分类?但是哪个效果好一些? (图一) 可能对这个数据集来说,三个的分类器都一样足够好了吧,但是其实不然,这个只是训练集,现实测试的样本…
姚班天才少年鬲融凭非凸优化研究成果获得斯隆研究奖 近日,美国艾尔弗·斯隆基金会(The Alfred P. Sloan Foundation)公布了2019年斯隆研究奖(Sloan Research Fellowships)获奖名单,华裔学者鬲融获此殊荣. 鬲融 2004 年从河北省保送至清华大学计算机系,是首届清华姚班毕业生,普林斯顿大学计算机科学系博士,曾在微软研究院新英格兰分部做博士后,2015年至今在杜克大学担任助理教授. 斯隆研究奖自1955年设立,每年颁发一次,旨在向物理学.化学和数…
1.最优化与线性规划 最优化问题的三要素是决策变量.目标函数和约束条件. 线性规划(Linear programming),是研究线性约束条件下线性目标函数的极值问题的优化方法,常用于解决利用现有的资源得到最优决策的问题. 简单的线性规划问题可以用 Lingo软件求解,Matlab.Python 中也有求解线性规划问题的库函数或求解器,很容易学习和使用,并不需要用模拟退火算法.但是,由一般线性规划问题所衍生的整数规划.混合规划.0/1规划.二次规划.非线性规划.组合优化问题,则并不是调用某个库函…
1 最优化概论 (1) 最优化的目标 最优化问题指的是找出实数函数的极大值或极小值,该函数称为目标函数.由于定位\(f(x)\)的极大值与找出\(-f(x)\)的极小值等价,在推导计算方式时仅考虑最小化问题就足够了.极少的优化问题,比如最小二乘法,可以给出封闭的解析解(由正规方程得到).然而,大多数优化问题,只能给出数值解,需要通过数值迭代算法一步一步地得到. (2) 有约束和无约束优化 一些优化问题在要求目标函数最小化的同时还要求满足一些等式或者不等式的约束.比如SVM模型的求解就是有约束优化…
Apply Newton Method to Find Extrema in OPEN CASCADE eryar@163.com Abstract. In calculus, Newton’s method is used for finding the roots of a function. In optimization, Newton’s method is applied to find the roots of the derivative. OPEN CASCADE implem…
Basis(基础): SSE(Sum of Squared Error, 平方误差和) SAE(Sum of Absolute Error, 绝对误差和) SRE(Sum of Relative Error, 相对误差和) MSE(Mean Squared Error, 均方误差) RMSE(Root Mean Squared Error, 均方根误差) RRSE(Root Relative Squared Error, 相对平方根误差) MAE(Mean Absolute Error, 平均绝…
声明:本博客整理自博友@zhouyong计算广告与机器学习-技术共享平台,尊重原创,欢迎感兴趣的博友查看原文. 写在前面 记得在<Pattern Recognition And Machine Learning>一书中的开头有讲到:“概率论.决策论.信息论3个重要工具贯穿着<PRML>整本书,虽然看起来令人生畏…”.确实如此,其实这3大理论在机器学习的每一种技法中,或多或少都会出现其身影(不局限在概率模型). <PRML>书中原话:”This chapter also…
OPEN CASCADE Multiple Variable Function eryar@163.com Abstract. Multiple variable function with gradient and Hessian matrix is very very import in OPEN CASCADE optimization algorithms. In order to understand these optimization algorithm better, let’s…
OPEN CASCADE Gauss Least Square eryar@163.com Abstract. The least square can be used to solve a set of n linear equations of m unknowns(n >= m). The OPEN CASCADE class math_GaussLeastSquare implements the least square solution of the linear equations…
在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法.这里就对梯度下降法做一个完整的总结. 1. 梯度 在微积分里面,对多元函数的参数求∂偏导数,把求得的各个参数的偏导数以向量的形式写出来,就是梯度.比如函数f(x,y), 分别对x,y求偏导数,求得的梯度向量就是(∂f/∂x, ∂f/∂y)T,简称grad f(x,y)或者▽f(x,y).对于在点(x0,y0)的具体梯度向量就是(∂f/∂x0, ∂f/∂…
拉格朗日乘数法(Lagrange Multiplier Method)之前听数学老师授课的时候就是一知半解,现在越发感觉拉格朗日乘数法应用的广泛性,所以特意抽时间学习了麻省理工学院的在线数学课程.新学到的知识一定要立刻记录下来,希望对各位博友有些许帮助. 1. 拉格朗日乘数法的基本思想 作为一种优化算法,拉格朗日乘子法主要用于解决约束优化问题,它的基本思想就是通过引入拉格朗日乘子来将含有n个变量和k个约束条件的约束优化问题转化为含有(n+k)个变量的无约束优化问题.拉格朗日乘子背后的数学意义是其…
3D打印:三维智能数字化创造(全彩)(全球第一本系统阐述3D打印与3D智能数字化的专业著作) 吴怀宇 编   ISBN 978-7-121-22063-0 2014年1月出版 定价:99.00元 428页 16开​ ​编辑推荐​ 本书包含最新创客实践:组装3D打印机,开设3D照相馆,制作四轴飞行器...... 拥有众多读者群体:操作实战派.技术方法派.商业运作派.大局宏观派.学院理论派...... 操作实战派:面向所有对3D打印感兴趣的读者,包括3D打印操作.3D智能数字化扫描.建模.网格处理(…