hdoj 1159最长公共子序列】的更多相关文章

 /*Common Subsequence A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exist…
Common Subsequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 32693    Accepted Submission(s): 14786 Problem Description A subsequence of a given sequence is the given sequence with some el…
Common Subsequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 53443    Accepted Submission(s): 24607 Problem Description A subsequence of a given sequence is the given sequence with some el…
Description A palindrome is a symmetrical string, that is, a string read identically from left to right as well as from right to left. You are to write a program which, given a string, determines the minimal number of characters to be inserted into t…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1159 题意: 求最长公共子序列. 题解: (LCS模板题) 表示状态: dp[i][j] = max len of LCS a串匹配到第i位,b串匹配到第j位,此时的最长公共子序列长度. 如何转移: 首先,一个明显的决策是,如果a[i] == b[j],那么此一定要匹配.(贪心) 所以分两种情况: (1)a[i] == b[j]:dp[i][j] = dp[i-1][j-1] + 1 (2)a[i]…
http://poj.org/problem?id=1159 题意: 给出一个字符串,计算最少要插入多少个字符可以使得该串变为回文串. 思路: 计算出最长公共子序列,再用原长-LCS=所要添加的字符数. #include<iostream> #include<string> #include<cstring> #include<cstdio> #include<algorithm> using namespace std; + ; char s1…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1159 Common Subsequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 37551    Accepted Submission(s): 17206 Problem Description A subsequence of…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1159 Common Subsequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 25416    Accepted Submission(s): 11276 Problem Description A subsequence of…
HDU 1159 Common Subsequence 最长公共子序列 题意 给你两个字符串,求出这两个字符串的最长公共子序列,这里的子序列不一定是连续的,只要满足前后关系就可以. 解题思路 这个当然要使用动态规划了. 这里\(dp[i][j]\)代表第一个串的前\(i\)个字符和第二个串的前\(j\)个字符中最长的公共子序列的最长长度,递推关系如下: \[ d[i][j]= \begin{cases} dp[i-1][j-1]+1 & \text{if} &str1[i]==str2[j…
题目链接 基础的最长公共子序列 #include <bits/stdc++.h> using namespace std; ; char c[maxn],d[maxn]; int dp[maxn][maxn]; int main() { while(scanf("%s%s",c,d)!=EOF) { memset(dp,,sizeof(dp)); int n=strlen(c); int m=strlen(d); ;i<n;i++) ;j<m;j++) if(c…