Tensorflow 优化学习】的更多相关文章

# coding: utf-8 import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_data print("hello") #载入数据集mnist = input_data.read_data_sets("F:\\TensorflowProject\\MNIST_data",one_hot=True) #每个批次的大小,训练时一次100张放入神经网络中训练batch…
TensorFlow深度学习,一篇文章就够了 2016/09/22 · IT技术 · TensorFlow, 深度学习 分享到:6   原文出处: 我爱计算机 (@tobe迪豪 )    作者: 陈迪豪,就职小米科技,深度学习工程师,TensorFlow代码提交者. TensorFlow深度学习框架 Google不仅是大数据和云计算的领导者,在机器学习和深度学习上也有很好的实践和积累,在2015年年底开源了内部使用的深度学习框架TensorFlow. 与Caffe.Theano.Torch.MX…
http://blog.jobbole.com/105602/ 作者: 陈迪豪,就职小米科技,深度学习工程师,TensorFlow代码提交者. TensorFlow深度学习框架 Google不仅是大数据和云计算的领导者,在机器学习和深度学习上也有很好的实践和积累,在2015年年底开源了内部使用的深度学习框架TensorFlow. 与Caffe.Theano.Torch.MXNet等框架相比,TensorFlow在Github上Fork数和Star数都是最多的,而且在图形分类.音频处理.推荐系统和…
TensorFlow深度学习框架 Google不仅是大数据和云计算的领导者,在机器学习和深度学习上也有很好的实践和积累,在2015年年底开源了内部使用的深度学习框架TensorFlow. 与Caffe.Theano.Torch.MXNet等框架相比,TensorFlow在Github上Fork数和Star数都是最多的,而且在图形分类.音频处理.推荐系统和自然语言处理等场景下都有丰富的应用.最近流行的Keras框架底层默认使用TensorFlow,著名的斯坦福CS231n课程使用TensorFlo…
教程 | 没有博士学位,照样玩转TensorFlow深度学习 机器之心2017-01-24 12:32:22 程序设计 谷歌 操作系统 阅读(362)评论(0) 选自Codelabs 机器之心编译 参与:侯韵楚.王宇欣.赵华龙.邵明.吴攀 本文内容由机器之心编译自谷歌开发者博客的 Codelabs 项目.据介绍,Google Developers Codelabs 提供了有引导的.教程式的和上手式的编程体验.大多数 Codelabs 项目都能帮助你了解开发一个小应用或为一个已有的应用加入新功能的…
现代英特尔® 架构上的 TensorFlow* 优化 转自:https://software.intel.com/zh-cn/articles/tensorflow-optimizations-on-modern-intel-architecture 英特尔:Elmoustapha Ould-Ahmed-Vall,Mahmoud Abuzaina,Md Faijul Amin,Jayaram Bobba,Roman S Dubtsov,Evarist M Fomenko,Mukesh Ganga…
高中数学学过,函数在一阶导数为零的地方达到其最大值和最小值.梯度下降算法基于相同的原理,即调整系数(权重和偏置)使损失函数的梯度下降. 在回归中,使用梯度下降来优化损失函数并获得系数.本节将介绍如何使用 TensorFlow 的梯度下降优化器及其变体. 按照损失函数的负梯度成比例地对系数(W 和 b)进行更新.根据训练样本的大小,有三种梯度下降的变体: Vanilla 梯度下降:在 Vanilla 梯度下降(也称作批梯度下降)中,在每个循环中计算整个训练集的损失函数的梯度.该方法可能很慢并且难以…
TensorFlow优化器及用法 函数在一阶导数为零的地方达到其最大值和最小值.梯度下降算法基于相同的原理,即调整系数(权重和偏置)使损失函数的梯度下降. 在回归中,使用梯度下降来优化损失函数并获得系数.本文将介绍如何使用 TensorFlow 的梯度下降优化器及其变体. 按照损失函数的负梯度成比例地对系数(W 和 b)进行更新.根据训练样本的大小,有三种梯度下降的变体: Vanilla 梯度下降:在 Vanilla 梯度下降(也称作批梯度下降)中,在每个循环中计算整个训练集的损失函数的梯度.该…
TensorFlow本身是分布式机器学习框架,所以是基于深度学习的,前一篇TensorFlow简易学习[2]:实现线性回归对只一般算法的举例只是为说明TensorFlow的广泛性.本文将通过示例TensorFlow如何创建.训练一个神经网络. 主要包括以下内容: 神经网络基础 基本激励函数 创建神经网络 神经网络简介 关于神经网络资源很多,这里推荐吴恩达的一个Tutorial. 基本激励函数 关于激励函数的作用,常有解释:不使用激励函数的话,神经网络的每层都只是做线性变换,多层输入叠加后也还是线…
Anaconda3(python3.6)安装tensorflow Anaconda3中安装tensorflow3是非常简单的,仅需通过 pip install tensorflow 测试代码: import tensorflow as tf >>> hello =tf.constant("Hello TensorFlow~") >>> soss=tf.Session() >>> print(soss.run(hello)) b'He…