loj2051 「HNOI2016」序列】的更多相关文章

ref #include <algorithm> #include <iostream> #include <cstdio> #include <cmath> using namespace std; typedef long long ll; int n, q, a[100005], l[100005], r[100005], sta[100005], din, blc, bel[100005], st[100005][19], mii[17], mlg[…
「HNOI2016」序列 有一些高妙的做法,懒得看 考虑莫队,考虑莫队咋移动区间 然后你在区间内部找一个最小值的位置,假设现在从右边加 最小值左边区间显然可以\(O(1)\),最小值右边的区间是断掉的,但注意它是单调的 于是每个点假装向左边第一个小于它的位置连边,就可以处理出前缀和一样的东西,然后预处理后也是\(O(1)\)的 Code: #include <cstdio> #include <cctype> #include <algorithm> #include…
#2051. 「HNOI2016」序列 题目描述 给定长度为 n nn 的序列:a1,a2,⋯,an a_1, a_2, \cdots , a_na​1​​,a​2​​,⋯,a​n​​,记为 a[1:n] a[1 \colon n]a[1:n].类似地,a[l:r] a[l \colon r]a[l:r](1≤l≤r≤N 1 \leq l \leq r \leq N1≤l≤r≤N)是指序列:al,al+1,⋯,ar−1,ar a_{l}, a_{l+1}, \cdots ,a_{r-1}, a_…
传送门 Description 有 \(q\) 个询问,每个询问给定两个数\(l\) 和\(r\),求 \(a[l:r]\) 的不同子序列的最小值之和 Solution  校内模拟赛用了这道题,但是莫队只能拿\(80\)分,正解是猫树 当然还是莫队啦 考虑一个数加入时的贡献,就是以它为端点的区间的贡献 发现可以将现有的区间分成一段一段的,每段的最小值不同 这个可以用单调栈\(+\)倍增解决 于是就有了\(O(n\sqrt n\log n)\)的做法 但是显然过不了原题 所以想办法把\(\log\…
真是 \(6\) 道数据结构毒瘤... 开始口胡各种做法... 「HNOI2016」网络 整体二分+树状数组. 开始想了一个大常数 \(O(n\log^2 n)\) 做法,然后就被卡掉了... 发现直接维护一定是 \(O(n\log^3 n)\) 的,所以我当时选择了用 \(LCT\) 维护树上路径,跑起来比树剖可能都慢... 其实路径加单点查可以直接在 \(dfs\) 序上弄树状数组的,虽然也是 \(O(n\log^2 n)\) 的,但是肯定能通过此题... \(Code\ Below:\)…
Loj #3059. 「HNOI2019」序列 给定一个长度为 \(n\) 的序列 \(A_1, \ldots , A_n\),以及 \(m\) 个操作,每个操作将一个 \(A_i\) 修改为 \(k\).第一次修改之前及每次修改之后,都要求你找到一个同样长度为 \(n\) 的单调不降序列 \(B_1, \ldots , B_n\),使得 \(\sum_{i=1}^n (A_i −B_i)^2\) 最小,并输出该最小值.需要注意的是每次操作的影响都是独立的,也即每次操作只会对当前询问造成影响.为…
「HNOI2016」树 事毒瘤题... 我一开始以为每次把大树的子树再接给大树,然后死活不知道咋做,心想怕不是个神仙题哦 然后看题解后才发现是把模板树的子树给大树,虽然思维上难度没啥了,但是还是很难写的. 大值思路是对每个子树维护成一个大节点,存一些根啊,深度啊,到大节点根距离啊,节点编号范围啊之类的信息. 然后发现维护相对节点标号大小是个区间第k大,得对dfs序建一颗主席树 然后每次询问倍增跳一跳,讨论个几种情况之类的. ps:别吐槽名字 Code: #include <cstdio> #i…
「HNOI2016」网络 我有一个绝妙的可持久化树套树思路,可惜的是,它的空间是\(n\log^2 n\)的... 注意到对一个询问,我们可以二分答案 然后统计经过这个点大于当前答案的路径条数,如果这个路径条数等于大于当前答案的所有路径条数,那么这个答案是不行的. 关于链修改单点询问,可以树状数组维护dfs序,然后每次修改链去差分修改 然后把二分答案拿到整体二分上去就可以了 Code: #include <cstdio> #include <cctype> #include <…
「HNOI2016」最小公倍数 考虑暴力,对每个询问,处理出\(\le a,\le b\)的与询问点在一起的联通块,然后判断是否是一个联通块,且联通块\(a,b\)最大值是否满足要求. 然后很显然需要去离线搞一下,考虑定期重构. 具体的,先把边按\(a\)排序,然后每\(S\)分一块. 处理每一块时,把前面所有块的边和权值在这个块内的询问放在一起按\(b\)排序,这个可以用类似归并的思路\(O(n)\)完成. 然后遍历这个排序后的东西,用带权并查集维护联通性. 具体的,如果是边,就在并查集里面加…
「SDOI2017」序列计数 思路: 矩阵快速幂: 代码: #include <bits/stdc++.h> using namespace std; #define mod 20170408 #define ll long long struct MatrixType { int n,m; ll ai[][]; void mem(int n_,int m_) { n=n_,m=m_; ;i<=n;i++) ;v<=m;v++) ai[i][v]=; } MatrixType op…