CUDA: 原子操作】的更多相关文章

和许多多线程并行问题一样,CUDA也存在互斥访问的问题,即当一个线程改变变量X,而另外一个线程在读取变量X的值,执行原子操作类似于有一个自旋锁,只有等X的变量在改变完成之后,才能执行读操作,这样可以保证每一次读取的都是最新的值. 在kernel 程序中,做统计累加,都需要使用原子操作:atomicAdd(); 原子操作很明显的会影响程序性能,所以可以的话,尽可能避免原子操作. CUDA原子操作API: C.1.1  atomicAdd()int atomicAdd(int* address, i…
http://www.cnblogs.com/5long/p/cuda-parallel-programming-1.html 本系列目录: [CUDA并行程序设计系列(1)]GPU技术简介 [CUDA并行程序设计系列(2)]CUDA简介及CUDA初步编程 [CUDA并行程序设计系列(3)]CUDA线程模型 [CUDA并行程序设计系列(4)]CUDA内存 [CUDA并行程序设计系列(5)]CUDA原子操作与同步 [CUDA并行程序设计系列(6)]CUDA流与多GPU 关于CUDA的一些学习资料…
▶ 本章介绍了手动实现原子操作.重构了第五章向量点积的过程.核心是通过定义结构Lock及其运算,实现锁定,读写,解锁的过程. ● 章节代码 #include <stdio.h> #include "cuda_runtime.h" #include "device_launch_parameters.h" #include "cuda.h" #include "D:\Code\CUDA\book\common\book.h&q…
CUDA的原子操作可以理解为对一个变量进行"读取-修改-写入"这三个操作的一个最小单位的执行过程,这个执行过程不能够再分解为更小的部分,在它执行过程中,不允许其他并行线程对该变量进行读取和写入的操作.基于这个机制,原子操作实现了对在多个线程间共享的变量的互斥保护,确保任何一次对变量的操作的结果的正确性. 原子操作确保了在多个并行线程间共享的内存的读写保护,每次只能有一个线程对该变量进行读写操作,一个线程对该变量操作的时候,其他线程如果也要操作该变量,只能等待前一线程执行完成.原子操作确…
1.1以上计算功能集支持全局内存上的原子操作, 1.2以上支持共享内存上的原子操作. atomicAdd(add,y)将生成一个原子的操作序列,这个操作序列包括读取地址addr处的值,将y增加到这个值,以及将结果保存回地址addr. 一个统计字符出现频率的直方图GPU内核函数: __global__ void histo_kernel(unsigned char* buffer, long size, unsigned int* histo){ __shared__ unsigned ]; tm…
CUDA基本概念 CUDA网格限制 1.2CPU和GPU的设计区别 2.1CUDA-Thread 2.2CUDA-Memory(存储)和bank-conflict 2.3CUDA矩阵乘法 3.1 全局存储带宽与合并访问 -- Global Memory(DRAM) bandwidth and memory coalesce 3.2 卷积 3.3分析卷积乘法优化的复用 4.1Reduction模型 4.2 CUDA Reduction 一步一步优化 4.3 Reduction代码(Heteroge…
http://blog.csdn.net/augusdi/article/details/12833235 CUDA从入门到精通(零):写在前面 在老板的要求下.本博主从2012年上高性能计算课程開始接触CUDA编程,随后将该技术应用到了实际项目中.使处理程序加速超过1K,可见基于图形显示器的并行计算对于追求速度的应用来说无疑是一个理想的选择. 还有不到一年毕业.怕是毕业后这些技术也就随毕业而去,准备这个暑假开辟一个CUDA专栏,从入门到精通.步步为营.顺便分享设计的一些经验教训.希望能给学习C…
什么是Histogramming Histogramming是一种从大的数据集中提取典型特征和模式的方式. 在统计学中,直方图(英语:Histogram)是一种对数据分布情况的图形表示,是一种二维统计图表,它的两个坐标分别是统计样本和该样本对应的某个属性的度量. 图像直方图(英语:Image Histogram)是用以表示数字图像中亮度分布的直方图,标绘了图像中每个亮度值的像素数.可以借助观察该直方图了解需要如何调整亮度分布.这种直方图中,横坐标的左侧为纯黑.较暗的区域,而右侧为较亮.纯白的区域…
0. APOD过程 ● 评估.分析代码运行时间的组成,对瓶颈进行并行化设计.了解需求和约束条件,确定应用程序的加速性能改善的上限. ● 并行化.根据原来的代码,采用一些手段进行并行化,例如使用现有库,或加入一些预处理指令等.同时需要代码重构来暴露它们固有的并行性. ● 优化.并行化完成后,需要通过优化来提高性能.优化可以应用于各个级别,从数据传输到计算到浮点操作序列的微调.分析工具对这一过程非常有用,可以建议开发人员优化工作的下一个策略. ● 部署.将结果与原始期望进行比较.回想一下,初始评估步…
一.CUDA结构 硬件:GPU(Graphics Processing Unit)   SM(Streaming Multiprocessor)     SP(Streaming Processor) 软件:Grid   Blcok   Thread 每个GPU由若干SM组成,每个SM由若干SP加上Register和shared memory组成,SP是真正执行线程的单元,这是GPU的硬件架构. CUDA提供GBT逻辑结构,大致对应GSM 除此之外,GPU的调度单位是warp,基本上是32个Th…