引言 在上两篇文章 spark 源码分析之十九 -- DAG的生成和Stage的划分 和 spark 源码分析之二十 -- Stage的提交 中剖析了Spark的DAG的生成,Stage的划分以及Stage转换为TaskSet后的提交. 如下图,我们在前两篇文章中剖析了DAG的构建,Stage的划分以及Stage转换为TaskSet后的提交,本篇文章主要剖析TaskSet被TaskScheduler提交之后的Task的整个执行流程,关于具体Task是如何执行的两种stage对应的Task的执行有…
在<Spark源码分析之Job提交运行总流程概述>一文中,我们提到了,Job提交与运行的第一阶段Stage划分与提交,可以分为三个阶段: 1.Job的调度模型与运行反馈: 2.Stage划分: 3.Stage提交:对应TaskSet的生成. 今天,我们就结合源码来分析下第一个小阶段:Job的调度模型与运行反馈. 首先由DAGScheduler负责将Job提交到事件队列eventProcessLoop中,等待调度执行.入口方法为DAGScheduler的runJon()方法.代码如下: /**…
问题的提出 本篇文章将回答如下问题: 1.  spark任务在执行的时候,其内存是如何管理的? 2. 堆内内存的寻址是如何设计的?是如何避免由于JVM的GC的存在引起的内存地址变化的?其内部的内存缓存池回收机制是如何设计的? 3. 堆外和堆内内存分别是通过什么来分配的?其数据的偏移量是如何计算的? 4. 消费者MemoryConsumer是什么? 5. 数据在内存页中是如何寻址的? 单个任务的内存管理是由 org.apache.spark.memory.TaskMemoryManager 来管理…
Spark是现在很流行的一个基于内存的分布式计算框架,既然是基于内存,那么自然而然的,内存的管理就是Spark存储管理的重中之重了.那么,Spark究竟采用什么样的内存管理模型呢?本文就为大家揭开Spark内存管理模型的神秘面纱. 我们在<Spark源码分析之七:Task运行(一)>一文中曾经提到过,在Task被传递到Executor上去执行时,在为其分配的TaskRunner线程的run()方法内,在Task真正运行之前,我们就要构造一个任务内存管理器TaskMemoryManager,然后…
原创文章,转载请注明: 转载自http://www.cnblogs.com/tovin/p/3872785.html  SparkContext是应用启动时创建的Spark上下文对象,是一个重要的入口类.本文主要分析下在SparkContext类创建过程中进行的一些重要操作: 1.创建SparkConf对象 创建SparkConf对象来管理spark应用的属性设置.SparkConf类比较简单,是通过一个Hashap容器来管理key.value类型的属性.…
创建或使用现有Session 从Spark 2.0 开始,引入了 SparkSession的概念,创建或使用已有的session 代码如下: val spark = SparkSession .builder .appName("SparkTC") .getOrCreate() 首先,使用了 builder 模式来创建或使用已存在的SparkSession,org.apache.spark.sql.SparkSession.Builder#getOrCreate 代码如下: def g…
在<Spark源码分析之七:Task运行(一)>一文中,我们详细叙述了Task运行的整体流程,最终Task被传输到Executor上,启动一个对应的TaskRunner线程,并且在线程池中被调度执行.继而,我们对TaskRunner的run()方法进行了详细的分析,总结出了其内Task执行的三个主要步骤: Step1:Task及其运行时需要的辅助对象构造,主要包括: 1.当前线程设置上下文类加载器: 2.获取序列化器ser: 3.更新任务状态TaskState: 4.计算垃圾回收时间: 5.反…
在Task调度相关的两篇文章<Spark源码分析之五:Task调度(一)>与<Spark源码分析之六:Task调度(二)>中,我们大致了解了Task调度相关的主要逻辑,并且在Task调度逻辑的最后,CoarseGrainedSchedulerBackend的内部类DriverEndpoint中的makeOffers()方法的最后,我们通过调用TaskSchedulerImpl的resourceOffers()方法,得到了TaskDescription序列的序列Seq[Seq[Tas…
在 spark 源码分析之二 -- SparkContext 的初始化过程 中,第 14 步 和 16 步分别描述了 TaskScheduler的 初始化 和 启动过程. 话分两头,先说 TaskScheduler的初始化过程 TaskScheduler的实例化 val (sched, ts) = SparkContext.createTaskScheduler(this, master, deployMode) 其调用了org.apache.spark.SparkContext#createT…
在前面源码剖析介绍中,spark 源码分析之二 -- SparkContext 的初始化过程 中的SparkEnv和 spark 源码分析之四 -- TaskScheduler的创建和启动过程 中的ClientApp启动过程中,都涉及到了Spark的内置RPC的知识.本篇专门把RPC 拿出来剖析一下. 因为RPC 在 Spark 中内容虽然不多,但理清楚还是花费很多精力的,计划每天只剖析一小部分,等剖析完毕,会专门有一篇总结性的文章出来. 本篇作为RPC分析开篇,主要剖析了NettyRpcEnv…