http://www.cnblogs.com/batteryhp/p/5000104.html 第四章 Numpy基础:数组和矢量计算 第一部分:numpy的ndarray:一种多维数组对象 实话说,用numpy的主要目的在于应用矢量化运算.Numpy并没有多么高级的数据分析功能,理解Numpy和面向数组的计算能有助于理解后面的pandas.按照课本的说法,作者关心的功能主要集中于: 用于数据整理和清理.子集构造和过滤.转换等快速的矢量化运算 常用的数组解法,如排序.唯一化.集合运算等 高效的描…
Python Numpy基础教程 本文是一个关于Python numpy的基础学习教程,其中,Python版本为Python 3.x 什么是Numpy Numpy = Numerical + Python,它是Python中科学计算的核心库,可以高效的处理多维数组的计算.并且,因为它的许多底层函数是用C语言编写的,所以运算速度敲快. 基础知识 ndarray NumPy的主要对象是同类型的多维数组ndarray.它是一个通用的同构数据多维容器,所有的元素必须是相同类型的,并通过正整数元组索引.利…
<利用Python进行数据分析·第2版>第四章 Numpy基础:数组和矢量计算 numpy高效处理大数组的数据原因: numpy是在一个连续的内存块中存储数据,独立于其他python内置对象.其C语言编写的算法库可以操作内存而不必进行其他工作.比起内置序列,使用的内存更少(即时间更快,空间更少) numpy可以在整个数组上执行复杂的计算,而不需要借助python的for循环 4.0 前提知识 数据:结构化的数据代指所有的通用数据,如表格型,多维数组,关键列,时间序列等 相关包:numpy pa…
利用Python进行数据分析--Numpy基础:数组和矢量计算 ndarry,一个具有矢量运算和复杂广播能力快速节省空间的多维数组 对整组数据进行快速运算的标准数学函数,无需for-loop 用于读写磁盘数据的工具以及用于操作内存映射文件的工具? 线性代数.随机数生成以及傅里叶变换功能 用于集成C/C++等代码的工具 一.ndarry:一种多维数组对象 1.创建ndarry #一维 In [5]: data = [1,2,3] In [6]: import numpy as np In [7]:…
Numpy 基础 参考https://www.jianshu.com/p/83c8ef18a1e8 import numpy as np 简单创建数组 # 创建简单列表 a = [1, 2, 3, 4] # 将列表转换为数组 b = np.array(a) print(a, "\t", b) print("\n数组元素个数:\t",b.size) print("数组形状:\t", b.shape) print("数组维度:\t"…
来源于:https://github.com/HanXiaoyang/python-and-numpy-tutorial/blob/master/python-numpy-tutorial.ipynb python与numpy基础   寒小阳(2016年6月)   Python介绍   如果你问我没有编程基础,想学习一门语言,我一定会首推给你Python类似伪代码的书写方式,让你能够集中精力去解决问题,而不是花费大量的时间在开发和debug上同时得益于Numpy/Scipy这样的科学计算库,使得…
NumPy基础操作(3)--代数运算和随机数 (注:记得在文件开头导入import numpy as np) 目录: NumPy在矩阵运算中的应用 常用矩阵运算函数介绍 编程实现 利用NumPy生成随机数以及随机漫步 常用随机数生成函数介绍 编程实现 随机漫步编程实现 NumPy在矩阵运算中的应用 常用矩阵运算函数介绍 常用的numpy函数 diag 将一维数组转换为方阵,一维数组元素为方阵对角线元素 dot 矩阵点乘运算 trace 计算对角线元素的和 det 计算矩阵的行列式 eig 计算方…
NumPy基础操作(2) (注:记得在文件开头导入import numpy as np) 目录: 写在前面 转置和轴对换 NumPy常用函数 写在前面 本篇博文主要讲解了普通转置array.T.轴对换array.swapaxes().高维转置array.transpose().绝对值函数np.abs().np.maximum().np.argmax().np.argmin()等函数的调用方法和注意事项 转置和轴对换 array.T arr = np.arange(16).reshape((4,4…
随书练习,第四章  NumPy基础:数组和矢量运算 # coding: utf-8 # In[1]: # 加注释的三个方法1.用一对"""括起来要注释的代码块. # 2.用一对'''括起来要注释的代码块. # 3.选中要注释的代码,按下ctrl+/注释. # from numpy import * import numpy as np # In[2]: data=[[0.9526,-0.246,-0.8856], [0.5639,0.2379,0.9104]] # In[3]…
[学习笔记] Numpy基础 上专业选修<数据分析程序设计>课程,老师串讲了Numpy基础,边听边用jupyter敲了下--理解+笔记. 老师讲的很全很系统,有些点没有记录,在PPT里就不搬了. 环境:python3.6 vscode+jupyter扩展 #%% #------------------------------2019.9.23 NumPy----------------------------- import numpy as np # 1.NumPy在一个连续的内存块中存储数…