LLM并行训练3-数据并行】的更多相关文章

所谓的数据并行的条件是: 1.拥有大量的数据. 2.对数据的逻辑操作都是一致的. 3.数据之间没有顺序依赖. 运行并行编程可以充分的利用现在多核计算机的优势.记录代码如下: public class ParallerFor { public List<string> studentList; public ParallerFor() { this.studentList = new List<string>(); ; i < ; i++) { this.studentList…
命令式数据并行   Visual C# 2010和.NETFramework4.0提供了很多令人激动的新特性,这些特性是为应对多核处理器和多处理器的复杂性设计的.然而,因为他们包括了完整的新的特性,开发人员和架构师必须学习一种新的编程模型. 这一章是一些新的类.结构体和枚举类型,你可以使用这里来处理数据并行的场景.这章将为你展示怎样创建并行代码和描述与每个场景相关的新概念,而不是关注并发编程中的最复杂的问题.这样你将可以更加充分的理解性能改进. 开始并行任务  使用先前版本的.NET Frame…
命令式数据并行   Visual C# 2010和.NETFramework4.0提供了很多令人激动的新特性,这些特性是为应对多核处理器和多处理器的复杂性设计的.然而,因为他们包括了完整的新的特性,开发人员和架构师必须学习一种新的编程模型. 这一章是一些新的类.结构体和枚举类型,你可以使用这里来处理数据并行的场景.这章将为你展示怎样创建并行代码和描述与每个场景相关的新概念,而不是关注并发编程中的最复杂的问题.这样你将可以更加充分的理解性能改进. 开始并行任务  使用先前版本的.NET Frame…
​  前言  目前比较常见的并行训练是数据并行,这是基于模型能够在一个GPU上存储的前提,而当这个前提无法满足时,则需要将模型放在多个GPU上.现有的一些模型并行方案仍存在许多问题,本文提出了一种名为PatrickStar的异构训练系统.PatrickStar通过以细粒度方式管理模型数据来更有效地使用异构内存,从而克服了这些缺点. 本文附上了PatrickStar的使用示例.PatrickStar与模型定义无关,在PyTorch脚本上添加几行代码可以带来端到端的加速. 本文来自公众号CV技术指南…
Tensorflow 是一个为数值计算(最常见的是训练神经网络)设计的流行开源库.在这个框架中,计算流程通过数据流程图(data flow graph)设计,这为更改操作结构与安置提供了很大灵活性.TensorFlow 允许多个 worker 并行计算,这对必须通过处理的大量训练数据训练的神经网络是有益的.此外,如果模型足够大,这种并行化有时可能是必须的.在本文中,我们将探讨 TensorFlow 的分布式计算机制. TensorFlow 计算图示例 数据并行 VS. 模型并行 当在多个计算节点…
在计算机体系中,数据并行有两种实现路径:MIMD(Multiple Instruction Multiple Data,多指令流多数据流)和SIMD(Single Instruction Multiple Data,单指令流多数据流).其中MIMD的表现形式主要有多发射.多线程.多核心,在当代设计的以处理能力为目标驱动的处理器中,均能看到它们的身影.同时,随着多媒体.大数据.人工智能等应用的兴起,为处理器赋予SIMD处理能力变得愈发重要,因为这些应用存在大量细粒度.同质.独立的数据操作,而SIM…
百度为何开源深度机器学习平台?   有一系列领先优势的百度却选择开源其深度机器学习平台,为何交底自己的核心技术?深思之下,却是在面对业界无奈时的远见之举.   5月20日,百度在github上开源了其深度机器学习平台.此番发布的深度机器学习开源平台属于“深盟”的开源组织,其核心开发者来自百度深度学习研究院(IDL),微软亚洲研究院.华盛顿大学.纽约大学.香港科技大学,卡耐基·梅陇大学等知名公司和高校. 通过这一开源平台,世界各地的开发者们可以免费获得更优质和更容易使用的分布式机器学习算法源码,从…
PyTorch 在学术圈里已经成为最为流行的深度学习框架,如何在使用 PyTorch 时实现高效的并行化? 在芯片性能提升有限的今天,分布式训练成为了应对超大规模数据集和模型的主要方法.本文将向你介绍流行深度学习框架 PyTorch 最新版本( v1.5)的分布式数据并行包的设计.实现和评估. 论文地址:https://arxiv.org/pdf/2006.15704.pdf PyTorch 是深度学习研究和应用中广泛使用的科学计算包.深度学习的最新进展证明了大型数据集和大型模型的价值,这需要扩…
深度神经网络(Deep Neural Networks, 简称DNN)是近年来机器学习领域中的研究热点,产生了广泛的应用.DNN具有深层结构.数千万参数需要学习,导致训练非常耗时.GPU有强大的计算能力,适合于加速深度神经网络训练.DNN的单机多GPU数据并行框架是腾讯深度学习平台的一部分,腾讯深度学习平台技术团队实现了数据并行技术加速DNN训练,提供公用算法简化实验过程.对微信语音识别应用,在模型收敛速度和模型性能上都取得了有效提升——相比单GPU 4.6倍加速比,数十亿样本的训练数天收敛,测…
[深度学习系列2]Mariana DNN多GPU数据并行框架  本文是腾讯深度学习系列文章的第二篇,聚焦于腾讯深度学习平台Mariana中深度神经网络DNN的多GPU数据并行框架.   深度神经网络(Deep Neural Networks, 简称DNN)是近年来机器学习领域中的研究热点[1][2],产生了广泛的应用.DNN具有深层结构.数千万参数需要学习,导致训练非常耗时.GPU有强大的计算能力,适合于加速深度神经网络训练.DNN的单机多GPU数据并行框架是Mariana的一部分,Marian…