Xgboost建模】的更多相关文章

xgboost参数 选择较高的学习速率(learning rate).一般情况下,学习速率的值为0.1.但是,对于不同的问题,理想的学习速率有时候会在0.05到0.3之间波动.选择对应于此学习速率的理想决策树数量.XGBoost有一个很有用的函数"cv",这个函数可以在每一次迭代中使用交叉验证,并返回理想的决策树数量. 对于给定的学习速率和决策树数量,进行决策树特定参数调优(max_depth, min_child_weight, gamma, subsample, colsample…
XGBoost不仅仅可以用来做分类还可以做时间序列方面的预测,而且已经有人做的很好,可以见最后的案例. 应用一:XGBoost用来做预测 -------------------------------------------------- 一.XGBoost来历 xgboost的全称是eXtreme Gradient Boosting.正如其名,它是Gradient Boosting Machine的一个c++实现,作者为正在华盛顿大学研究机器学习的大牛陈天奇.他在研究中深感自己受制于现有库的计…
python平台下实现xgboost算法及输出的解释 1. 问题描述 ​ 近来, 在python环境下使用xgboost算法作若干的机器学习任务, 在这个过程中也使用了其内置的函数来可视化树的结果, 但对leaf value的值一知半解; 同时, 也遇到过使用xgboost 内置的predict 对测试集进行打分预测, 发现若干样本集的输出分值是一样的. 这个问题该怎么解释呢? 通过翻阅Stack Overflow 上的相关问题, 以及搜索到的github上的issue回答, 应该算初步对这个问…
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/41 本文地址:http://www.showmeai.tech/article-detail/203 声明:版权所有,转载请联系平台与作者并注明出处 收藏ShowMeAI查看更多精彩内容 引言 我们在上一篇SKLearn入门与简单应用案例里给大家讲到了SKLearn工具的基本板块与使用方法,在本篇内容中,我们展开讲解SKLearn的进阶与核心内容.SKLearn中有六大任务模块,如下…
Prepare the data 数据来自UCIhttp://archive.ics.uci.edu/ml/machine-learning-databases/credit-screening,一个信a用卡的数据,具体各项变量名以及变量名代表的含义不明(应该是出于保护隐私的目的),本文会用logit,GBM,knn,xgboost来对数据进行分类预测,对比准确率 预计的准确率应该是: xgboost > GBM > logit > knn Download the data datas…
python风控评分卡建模和风控常识(博客主亲自录制视频教程) https://study.163.com/course/introduction.htm?courseId=1005214003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share http://www.360doc.com/content/18/1015/10/60075508_794857307.shtml http://w…
1. 提升方法 提升(boosting)方法是一种常用的统计学方法,在分类问题中,它通过逐轮不断改变训练样本的权重,学习多个分类器,并将这些分类器进行线性组合,提高分类的性能 0x1: 提升方法的基本思路 提升方法基于这样一种思想:对于一个复杂任务来说,将多个专家的判断进行适当(按照一定权重)的综合(例如线性组合加法模型)所得出的判断,要比其中任何一个专家单独的判断好 历史上,Kearns和Valiant首先提出了“强可学习(strongly learnable)”和“弱可学习(weekly l…
从决策树.随机森林.GBDT最终到XGBoost,每个热门算法都不是孤立存在的,而是基于一系列算法的改进与优化.决策树算法简单易懂可解释性强,但是过拟合风险很大,应用场景有限:随机森林采用Bagging采样+随机属性选择+模型集成的方法解决决策树易过拟合的风险,但是牺牲了可解释性:GBDT在随机森林的基础上融合boosting的思想建立树与树之间的联系,使森林不再是互相独立的树存在,进而成为一种有序集体决策体系:XGBoost在GBDT的基础上更进一步,将每轮迭代的目标函数中加入正则项,进一步降…
Boosting方法实际上是采用加法模型与前向分布算法.在上一篇提到的Adaboost算法也可以用加法模型和前向分布算法来表示.以决策树为基学习器的提升方法称为提升树(Boosting Tree).对分类问题决策树是CART分类树,对回归问题决策树是CART回归树. 1.前向分布算法 引入加法模型 在给定了训练数据和损失函数$L(y, f(x))$ 的条件下,可以通过损失函数最小化来学习加法模型 然而对于这个问题是个很复杂的优化问题,而且要训练的参数非常的多,前向分布算法的提出就是为了解决模型的…
欢迎关注博主主页,学习python视频资源 https://blog.csdn.net/q383700092/article/details/53763328 调参后结果非常理想 from sklearn.model_selection import GridSearchCV from sklearn.datasets import load_breast_cancer from xgboost import XGBClassifier from sklearn.model_selection…