GMM-EM实验结果】的更多相关文章

华盛顿大学 机器学习 笔记. k-means的局限性 k-means 是一种硬分类(hard assignment)方法,例如对于文档分类问题,k-means会精确地指定某一文档归类到某一个主题,但很多时候硬分类并不能完全描述这个文档的性质,这个文档的主题是混合的,这时候需要软分类(soft assignment)模型. k-means 缺陷:(1)只关注聚类中心的表现.(2)聚类区域形状必须为对称圆形/球形,轴平行. 对于聚类区域大小不一.轴不平行.聚类空间重叠等情况,k-means 缺陷显著…
高斯混合模型 混合模型,顾名思义就是几个概率分布密度混合在一起,而高斯混合模型是最常见的混合模型: GMM,全称 Gaussian Mixture Model,中文名高斯混合模型,也就是由多个高斯分布混合起来的模型: 概率密度函数为 K 表示高斯分布的个数,αk 表示每个高斯分布的系数,αk>0,并且 Σαk=1, Ø(y|θk) 表示每个高斯分布,θk 表示每个高斯分布的参数,θk=(uk,σk2): 举个例子 男人和女人的身高都服从各自的高斯分布,把男人女人混在一起,那他们的身高就服从高斯混…
"机器学习/深度学习方法"系列,我本着开放与共享(open and share)的精神撰写,目的是让很多其它的人了解机器学习的概念,理解其原理,学会应用.如今网上各种技术类文章非常多,不乏大牛的精辟见解,但也有非常多滥竽充数.误导读者的.这个系列对教课书籍和网络资源进行汇总.理解与整理,力求一击中的,通俗易懂.机器学习非常难,是由于她有非常扎实的理论基础,复杂的公式推导:机器学习也非常easy,是由于对她不甚了解的人也能够轻易使用.我希望好好地梳理一些基础方法模型,输出一些真正有长期參…
涉及的领域可能有些生僻,骗不了大家点赞.但毕竟是人工智能的主流技术,在园子却成了非主流. 不可否认的是:乃值钱的技术,提高身价的技术,改变世界观的技术. 关于变分,通常的课本思路是: GMM --> EM --> VI --> Variational Bayesian Gaussian Mixture GMM是个好东西,实用的模型,也是讲解收敛算法的一个好载体. 关于这部分内容,如果你懂中文,推荐一个人,徐亦达老师.中文教学,亲手推算公式给读者的视频,是需要珍惜和珍藏的. 因为提供了pp…
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 开一个机器学习方法科普系列:做基础回顾之用,学而时习之:也拿出来与大家分享.数学水平有限,只求易懂,学习与工作够用.周期会比较长,因为我还想写一些其他的,呵呵. content: linear regression, Ridge, Lasso Logistic Regression, Softmax Kmeans, GMM, EM, Spectral Clustering Dimensionality R…
一.DataFrame执行后端优化(Tungsten第一阶段) DataFrame可以说是整个Spark项目最核心的部分,在1.5这个开发周期内最大的变化就是Tungsten项目的第一阶段已经完成.主要的变化是由Spark自己来管理内存而不是使用JVM,这样可以避免JVM GC带来的性能损失.内存中的Java对象被存储成Spark自己的二进制格式,计算直接发生在二进制格式上,省去了序列化和反序列化时间.同时这种格式也更加紧凑,节省内存空间,而且能更好的估计数据量大小和内存使用情况.如果大家对这部…
转自:http://blog.csdn.net/abcjennifer/article/details/8198352 在聚类算法K-Means, K-Medoids, GMM, Spectral clustering,Ncut一文中我们给出了GMM算法的基本模型与似然函数,在EM算法原理中对EM算法的实现与收敛性证明进行了详细说明.本文主要针对如何用EM算法在混合高斯模型下进行聚类进行代码上的分析说明. 1. GMM模型: 每个 GMM 由 K 个 Gaussian 分布组成,每个 Gauss…
目录 EM算法(1):K-means 算法 EM算法(2):GMM训练算法 EM算法(3):EM算法运用 EM算法(4):EM算法证明 EM算法(2):GMM训练算法 1. 简介 GMM模型全称为Gaussian Mixture Model,即高斯混合模型.其主要是针对普通的单个高斯模型提出来的.我们知道,普通高斯模型对实际数据拟合效果还不错,但是其有一个致命的缺陷,就是其为单峰函数,如果数据的真实分布为复杂的多峰分布,那么单峰高斯的拟合效果就不够好了. 与单峰高斯模型不同,GMM模型是多个高斯…
在聚类算法K-Means, K-Medoids, GMM, Spectral clustering,Ncut一文中我们给出了GMM算法的基本模型与似然函数,在EM算法原理中对EM算法的实现与收敛性证明进行了详细说明.本文主要针对如何用EM算法在混合高斯模型下进行聚类进行代码上的分析说明. 1. GMM模型: 每个 GMM 由 K 个 Gaussian 分布组成,每个 Gaussian 称为一个"Component",这些 Component 线性加成在一起就组成了 GMM 的概率密度函…
GMM及EM算法 标签(空格分隔): 机器学习 前言: EM(Exception Maximizition) -- 期望最大化算法,用于含有隐变量的概率模型参数的极大似然估计: GMM(Gaussian Mixture Model) -- 高斯混合模型,是一种多个高斯分布混合在一起的模型,主要应用EM算法估计其参数: 本篇博客首先从简单的k-means算法给出EM算法的迭代形式,然后用GMM的求解过程给出EM算法的宏观认识:最后给出EM的标准形式,并分析EM算法为什么收敛. K-Means Cl…
在聚类算法K-Means, K-Medoids, GMM, Spectral clustering,Ncut一文中我们给出了GMM算法的基本模型与似然函数,在EM算法原理中对EM算法的实现与收敛性证明进行了具体说明. 本文主要针对怎样用EM算法在混合高斯模型下进行聚类进行代码上的分析说明. 1. GMM模型: 每一个 GMM 由 K 个 Gaussian 分布组成.每一个 Gaussian 称为一个"Component",这些 Component 线性加成在一起就组成了 GMM 的概率…
提出混合模型主要是为了能更好地近似一些较复杂的样本分布,通过不断添加component个数,能够随意地逼近不论什么连续的概率分布.所以我们觉得不论什么样本分布都能够用混合模型来建模.由于高斯函数具有一些非常有用的性质.所以高斯混合模型被广泛地使用. GMM与kmeans相似,也是属于clustering,不同的是.kmeans是把每一个样本点聚到当中一个cluster,而GMM是给出这些样本点到每一个cluster的概率.每一个component就是一个聚类中心. GMM(Gaussian Mi…
In EM and GMM(Theory), I have introduced the theory of em algorithm for gmm. Now lets practice it in matlab! 1. Generate 1000 pieces of  random 2-dimention data which obey 5 gaussian distribution. function X = GenerateData Sigma = [1, 0; 0, 1]; mu1 =…
Part 1: Theory 目录: What's GMM? How to solve GMM? What's EM? Explanation of the result What's GMM? GMM is short for Guassian Mixture Model, which can be represented as follows:\[p(\mathbf{x}) = \sum_{k=1}^{K}\pi_kp(\mathbf{x}|\theta_k)\] where, \[p(\m…
一.GMM算法 EM算法实在是难以介绍清楚,因此我们用EM算法的一个特例GMM算法作为引入. 1.GMM算法问题描述 GMM模型称为混合高斯分布,顾名思义,它是由几组分别符合不同参数的高斯分布的数据混合而成的. 假设有n个样本点\(x_{1},x_{2},...,x_{n}\),它们来自K个不同的高斯分布.有如下参数: 1.不同高斯分布的数据占比:\(\pi_{i}\) 2.每个高斯分布的均值与方差:\(\pi_{i}~N(\mu_{i},\sigma_{i}^2)\) 我们的目的是求出每个\(…
GMM,即高斯混合模型(Gaussian Mixture Model),简单地讲,就是将多个高斯模型混合起来,作为一个新的模型,这样就可以综合运用多模型的表达能力.EM,指的是均值最大化算法(expectation-maximization),它是一种估计模型参数的策略,在 GMM 这类算法中应用广泛,因此,有时候人们又喜欢把 GMM 这类可以用 EM 算法求解的模型称为 EM 算法家族. 这篇文章会简单提一下 GMM 模型的内容,最主要的,还是讲一下 EM 算法如何应用到 GMM 模型的参数估…
1. 前言 我们之前有介绍过4. EM算法-高斯混合模型GMM详细代码实现,在那片博文里面把GMM说涉及到的过程,可能会遇到的问题,基本讲了.今天我们升级下,主要一起解析下EM算法中GMM(搞事混合模型)带惩罚项的详细代码实现. 2. 原理 由于我们的极大似然公式加上了惩罚项,所以整个推算的过程在几个地方需要修改下. 在带penality的GMM中,我们假设协方差是一个对角矩阵,这样的话,我们计算高斯密度函数的时候,只需要把样本各个维度与对应的\(\mu_k\)和\(\sigma_k\)计算一维…
1. EM算法-数学基础 2. EM算法-原理详解 3. EM算法-高斯混合模型GMM 4. EM算法-GMM代码实现 5. EM算法-高斯混合模型+Lasso 1. 前言 前面几篇博文对EM算法和GMM模型进行了介绍,本文我们通过对GMM增加一个惩罚项. 2. 不带惩罚项的GMM 原始的GMM的密度函数是 \[ p(\boldsymbol{x}|\boldsymbol{\pi},\boldsymbol{\mu},\boldsymbol{\Sigma})=\sum_{k=1}^K\pi_k\ma…
1. EM算法-数学基础 2. EM算法-原理详解 3. EM算法-高斯混合模型GMM 4. EM算法-高斯混合模型GMM详细代码实现 5. EM算法-高斯混合模型GMM+Lasso 1. 前言 EM的前3篇博文分别从数学基础.EM通用算法原理.EM的高斯混合模型的角度介绍了EM算法.按照惯例,本文要对EM算法进行更进一步的探究.就是动手去实践她. 2. GMM实现 我的实现逻辑基本按照GMM算法流程中的方式实现.需要全部可运行代码,请移步我的github. 输入:观测数据\(x_1,x_2,x…
1. EM算法-数学基础 2. EM算法-原理详解 3. EM算法-高斯混合模型GMM 4. EM算法-高斯混合模型GMM详细代码实现 5. EM算法-高斯混合模型GMM+Lasso 1. 前言 GMM(Gaussian mixture model) 混合高斯模型在机器学习.计算机视觉等领域有着广泛的应用.其典型的应用有概率密度估计.背景建模.聚类等. 2. GMM介绍 高斯混合模型(Gaussian Mixed Model)指的是多个高斯分布函数的线性组合,理论上GMM可以拟合出任意类型的分布…
用EM算法估计GMM模型参数 参考  西瓜书 再看下算法流程…
今天要来讨论的是EM算法.第一眼看到EM我就想到了我大枫哥,EM Master,千里马.RUA!!!不知道看这个博客的人有没有懂这个梗的. 好的,言归正传.今天要讲的EM算法,全称是Expectation maximization.期望最大化. 怎么个意思呢,就是给你一堆观測样本.让你给出这个模型的參数预计.我靠,这套路我们前面讨论各种回归的时候不是已经用烂了吗?求期望,求对数期望,求导为0,得到參数预计值.这套路我懂啊,MLE! 但问题在于,假设这个问题存在中间的隐变量呢?会不会把我们的套路给…
算法逻辑在这里: http://www.cnblogs.com/Azhu/p/4131733.html 贴之前先说下,本来呢是打算自己写一个的,在matlab 上,不过,实在是写不出来那么高效和健壮的,网上有很多实现的代码,例如上面参考里面的,那个代码明显有问题阿,然后因为那里面的代码与逻辑分析是一致的,那在其基础上修改看看,结果发现代码健壮性实在太差了,我的数据集是 70-by-2000 的矩阵,70个样本2000维,结果协方差的逆根本算不出来,全部是inf,那去前50维,还是算不出来,这个虽…
EM算法 EM算法主要用于求概率密度函数参数的最大似然估计,将问题$\arg \max _{\theta_{1}} \sum_{i=1}^{n} \ln p\left(x_{i} | \theta_{1}\right)$转换为更加易于计算的$\sum_{i=1}^{n} \ln p\left(x_{i}, \theta_{2} | \theta_{1}\right)$,其中$\theta_2$可以取任意的先验分布$q(\theta_2)$.EM算法的推导过程如下:$$\begin{aligned…
GMM与EM算法的Python实现 高斯混合模型(GMM)是一种常用的聚类模型,通常我们利用最大期望算法(EM)对高斯混合模型中的参数进行估计. 1. 高斯混合模型(Gaussian Mixture models, GMM) 高斯混合模型(Gaussian Mixture Model,GMM)是一种软聚类模型. GMM也可以看作是K-means的推广,因为GMM不仅是考虑到了数据分布的均值,也考虑到了协方差.和K-means一样,我们需要提前确定簇的个数. GMM的基本假设为数据是由几个不同的高…
GMM即高斯混合模型,下面根据EM模型从理论公式推导GMM: 随机变量X是有K个高斯分布混合而成,取各个高斯分布的概率为φ1,φ2,... ,φK,第i个高斯分布的均值为μi,方差为Σi.若观测到随机变量X的一系列样本x1,x2,...,xn,试估计参数φ,μ,Σ. E-step M-step 将多项分布和高斯分布的参数带入EM模型: 对均值求偏导:   令上式等于0,解的均值: 高斯分布的方差:求偏导,等于0: 多项分布的参数: 得到 拉格朗日乘子法: 由于多项分布的概率和为1,建立拉格朗日方…
1.极大似然估计 原理:假设在一个罐子中放着许多白球和黑球,并假定已经知道两种球的数目之比为1:3但是不知道那种颜色的球多.如果用放回抽样方法从罐中取5个球,观察结果为:黑.白.黑.黑.黑,估计取到黑球的概率为p; 假设p=1/4,则出现题目描述观察结果的概率为:(1/4)4 *(3/4) = 3/1024 假设p=3/4,则出现题目描述观察结果的概率为:(3/4)4 *(1/4) = 81/1024 由于81/1024 > 3/1024,因此任务p=3/4比1/4更能出现上述观察结果,所以p取…
目录 最大似然估计 K-means算法 EM算法 GMM算法(实际是高斯混合聚类) 中心思想:①极大似然估计 ②θ=f(θold) 此算法非常老,几乎不会问到,但思想很重要. EM的原理推导还是蛮复杂的,图片上没法子编辑公式,直接打字无法完美描述整个过程,所以我直接在纸上打出详细过程加以备注 有哪些看不清楚的下面评论区留言,每天我都在 概括 GMM算法…
极大似然估计 我们先从极大似然估计说起,来考虑这样的一个问题,在给定的一组样本x1,x2······xn中,已知它们来自于高斯分布N(u, σ),那么我们来试试估计参数u,σ. 首先,对于参数估计的方法主要有矩估计和极大似然估计,我们采用极大似然估计,高斯分布的概率密度函数如下: 我们可以将x1,x2,······,xn带入上述式子,得: 接下来,我们对L(x)两边去对数,得到: 于是,我们得到了l(x)的表达式,下面需要对其计算极大值: 通过对目标函数的参数u,σ分别求偏导,很容易得到: 对于…
EM算法是一种迭代算法,用于含有隐变量的概率模型参数的极大似然估计. 使用EM算法的原因 首先举李航老师<统计学习方法>中的例子来说明为什么要用EM算法估计含有隐变量的概率模型参数. 假设有三枚硬币,分别记作A, B, C.这些硬币正面出现的概率分别是$\pi,p,q$.进行如下掷硬币试验:先掷硬币A,根据其结果选出硬币B或C,正面选硬币B,反面边硬币C:然后掷选出的硬币,掷硬币的结果出现正面记作1,反面记作0:独立地重复$n$次试验,观测结果为$\{y_1,y_2,...,y_n\}$.问三…