Apache Flink - Window】的更多相关文章

Window: 在Streaming中,数据是无限且连续的,我们不可能等所有数据都到才进行处理,我们可以来一个就处理一下,但是有时我们需要做一些聚合类的处理,例如:在过去的1分钟内有多少用户点击了我们的网页.在这种情况下,我们必须定义一个窗口,用来收集最近一分钟内的数据,并对这个窗口内的数据进行计算. 窗口可以是时间和事件驱动的,窗口有翻滚窗口(Tumbling Window,无重叠),滚动窗口(Sliding Window,有重叠),和会话窗口(Session Window,活动间隙).raw…
Where did we come from? With the 0.9.0-milestone1 release, Apache Flink added an API to process relational data with SQL-like expressions called the Table API. The central concept of this API is a Table, a structured data set or stream on which relat…
Apache Flink 的数据流编程模型 抽象层次 Flink 为开发流式应用和批式应用设计了不同的抽象层次 状态化的流 抽象层次的最底层是状态化的流,它通过 ProcessFunction 嵌入到 DataStream API 中,允许用户自由地处理来自一个或多个流的事件(event)以及使用一致的容错状态 此外,用户可以注册事件时间并处理时间回调(callback),这使得程序可以处理更复杂的计算 核心 API 大多数情况下用户不直接在上面描述的这种低的抽象层面上编程,取而代之的是使用所谓…
原文地址:https://mp.weixin.qq.com/s?__biz=MzU2Njg5Nzk0NQ==&mid=2247483660&idx=1&sn=ecf01cfc8fd0b4f0630e9b23b92f4e82 本文简单介绍一下Flink,部分内容来源于网络,想深入了解Flink的读者可以参照官方文档深入学习Apache Flink. 流计算 在介绍Flink之前首先说一下流计算的概念,流计算是针对流式数据的实时计算. 流式数据是指将数据看作数据流的形式来处理,数据流是…
This post originally appeared on the Apache Flink blog. It was reproduced here under the Apache License, Version 2.0. This blog post provides an introduction to Apache Flink’s built-in monitoring and metrics system, that allows developers to effectiv…
January 25, 2019Use Cases, Apache Flink The Big Data Team at Tencent     In recent years, the increasing need for timeliness, together with advances in software and hardware technologies, drive the emergence of real-time stream processing. Real-time…
01 Mar 2018 Piotr Nowojski (@PiotrNowojski) & Mike Winters (@wints) This post is an adaptation of Piotr Nowojski’s presentation from Flink Forward Berlin 2017. You can find the slides and a recording of the presentation on the Flink Forward Berlin we…
January 11, 2018- Apache Flink Robert Metzger and Chris Ward A favorite session from Flink Forward Berlin 2017 was Robert Metzger’s “Keep It Going: How to Reliably and Efficiently Operate Apache Flink”. One of the topics that Robert touches on is how…
Tumbing Windows:滚动窗口,窗口之间时间点不重叠.它是按照固定的时间,或固定的事件个数划分的,分别可以叫做滚动时间窗口和滚动事件窗口.Sliding Windows:滑动窗口,窗口之间时间点存在重叠.对于某些应用,它们需要的时间是不间断的,需要平滑的进行窗口聚合. 例如,可以每30s记算一次最近1分钟用户所购买的商品数量的总数,这个就是时间滑动窗口:或者每10个客户点击购买,然后就计算一下最近100个客户购买的商品的总和,这个就是事件滑动窗口.Session Windows:会话窗…
 2016-04-30 22:24:39    Yanjun Apache Flink是一个面向分布式数据流处理和批量数据处理的开源计算平台,它能够基于同一个Flink运行时(Flink Runtime),提供支持流处理和批处理两种类型应用的功能.现有的开源计算方案,会把流处理和批处理作为两种不同的应用类型,因为他们它们所提供的SLA是完全不相同的:流处理一般需要支持低延迟.Exactly-once保证,而批处理需要支持高吞吐.高效处理,所以在实现的时候通常是分别给出两套实现方法,或者通过一个独…