使用data_flow_ops构造batch数据集】的更多相关文章

1. tf.unstack(number, axis=0)  表示对数据进行拆分 import tensorflow as tf import numpy as np data = np.array([[1, 2, 3], [2, 3, 4], [4, 5, 6]]) filenames = tf.unstack(data) #表示输入的数据 with tf.Session() as sess: for filename in filenames: print(sess.run(filename…
import tensorflow as tf import numpy as np def _parse_function(x): num_list = np.arange(10) return num_list def _from_tensor_slice(x): return tf.data.Dataset.from_tensor_slices(x) softmax_data = tf.data.Dataset.range(1000) # 构造一个队列 softmax_data = sof…
RDD的中文解释是弹性分布式数据集.构造的数据集的时候用的是List(链表)或者Array数组类型/* 使用makeRDD创建RDD */ /* List */ val rdd01 = sc.makeRDD(List(,,,,,)) val r01 = rdd01.map { x => x * x } println(r01.collect().mkString(",")) /* Array */ val rdd02 = sc.makeRDD(Array(,,,,,)) val…
在C#下使用TensorFlow.NET训练自己的数据集 今天,我结合代码来详细介绍如何使用 SciSharp STACK 的 TensorFlow.NET 来训练CNN模型,该模型主要实现 图像的分类 ,可以直接移植该代码在 CPU 或 GPU 下使用,并针对你们自己本地的图像数据集进行训练和推理.TensorFlow.NET是基于 .NET Standard 框架的完整实现的TensorFlow,可以支持 .NET Framework 或 .NET CORE , TensorFlow.NET…
作者:桂. 时间:2017-03-21  07:25:17 链接:http://www.cnblogs.com/xingshansi/p/6592599.html 声明:欢迎被转载,不过记得注明出处哦~ 前言 本文为曲线拟合与分布拟合系列的一部分,主要讲解混合拉普拉斯分布(Laplace Mixture Model,LMM).拉普拉斯也是常用的统计概率模型之一,网上关于混合高斯模型(GMM)的例子很多,而关于LMM实现的很少.其实混合模型都可以用EM算法推导,只是求闭式解的运算上略有差别,全文包…
https://zhuanlan.zhihu.com/p/27608348 更新:感谢@Gang He指出的代码错误.get_batches函数中第15行与第19行,代码已经重新修改,GitHub已更新. 前言 好久没有更新专栏,今天我们来看一个简单的Seq2Seq实现,我们将使用TensorFlow来实现一个基础版本的Seq2Seq,主要帮助理解Seq2Seq中的基础架构. 最基础的Seq2Seq模型包含了三个部分,即Encoder.Decoder以及连接两者的中间状态向量,Encoder通过…
常见算法(logistic回归,随机森林,GBDT和xgboost) 9.25r早上面网易数据挖掘工程师岗位,第一次面数据挖掘的岗位,只想着能够去多准备一些,体验面这个岗位的感觉,虽然最好心有不甘告终,不过继续加油. 不过总的来看,面试前有准备永远比你没有准备要强好几倍. 因为面试过程看重的不仅是你的实习经历多久怎样,更多的是看重你对基础知识的掌握(即学习能力和逻辑),实际项目中解决问题的能力(做了什么贡献). 先提一下奥卡姆剃刀:给定两个具有相同泛化误差的模型,较简单的模型比较复杂的模型更可取…
文章来源 DFann 版权声明:如果你觉得写的还可以,可以考虑打赏一下.转载请联系. https://blog.csdn.net/u011974639/article/details/78483779 简介 论文地址:Mask R-CNN 源代码:matterport - github 代码源于matterport的工作组,可以在github上fork它们组的工作. 软件必备 复现的Mask R-CNN是基于Python3,Keras,TensorFlow. Python 3.4+ Tensor…
1. 主要观点总结 0x1:什么场景下应用时序算法有效 历史数据可以被用来预测未来数据,对于一些周期性或者趋势性较强的时间序列领域问题,时序分解和时序预测算法可以发挥较好的作用,例如: 四季与天气的关系模式 以交通量计算的交通高峰期的模式 心跳的模式 股票市场和某些产品的销售周期 数据需要有较强的稳定性,例如”预测商店营业额“和"预测打车订单"的稳定性就比"预测某台服务器何时处于被入侵的异常状态"要强.从形成机制上讲,商店营业额和打车订单是由人的行为驱动的,风是由自…
测试用例 是指对一项特定的软件产品进行测试任务的描述,体现测试方案.方法.技术和策略. 内容包括测试目标.测试环境.输入数据.测试步骤.预期结果.测试脚本等,并形成文档. 每个具体测试用例都将包括下列详细信息:编制人.审定人.编制日期.版本.用例类型.设计说明书编号.用例编号.用例名称.输入说明.期望结果(含判断标准).环境要求.备注等. 测试用例设计 将软件测试的行为活动,作为一个科学化的组织归纳. 挑选具有代表性或者特殊性的测试数据来进行测试. 软件程序在测试用例限定的条件下,必须能够正常运…
一. 概念 依据Galois理论,从大量的(实验)数据(测试例)中挑选适量的,有代表性的点(例),从而合理地安排实验(测试)的一种科学实验设计方法.类似的方法有:聚类分析方法,因子方法方法等. 二. 应用 利用因果图来设计测试用例时, 作为输入条件的原因与输出结果之间的因果关系,有时很难从软件需求规格说明中得到.往往因果关系非常庞大,以至于据此因果图而得到的测试用例数目多的惊人,给软件测试带来沉重的负担,为了有效地,合理地减少测试的工时与费用,可利用正交实验设计方法进行测试用例的设计. 利用正交…
1. 概述 黑盒测试用例设计方法包括等价类划分法.边界值分析法.错误推测法.因果图法.判定表驱动法.正交试验设计法.功能图法等. 2. 等价类划分法 2.1.          概念 等价类划分法是把程序的输入域划分成若干部分(子集),然后从每个部分中选取少数代表性数据作为测试用例.每一类的代表性数据在测试中的作用等价于这一类中的其他值. 2.2.          等价类划分法的应用 等价类是指某个输入域的子集合.在该子集合中,各个输入数据对于揭露程序中的错误都是等效的,并合理地假定:测试某等…
<全国计算机等级考试三级教程:软件测试技术(2016年版)>根据教育部考试中心制订的<全国计算机等级考试三级软件测试技术考试大纲(2013年版)>编写而成.主要内容包括软件测试的基本概念.软件测试技术.软件测试过程和管理方法,此外,<全国计算机等级考试三级教程:软件测试技术(2016年版)>还讨论了软件自动化测试技术及有关工具,介绍了我国软件测试的现行标准和测试文档规范,最后结合软件测试过程管理平台QESuite和软件分析与测试工具QESAT/C介绍了软件测试工程的实践…
摘要:MapReduce程序进行数据去重. 关键词:MapReduce   数据去重 数据源:人工构造日志数据集log-file1.txt和log-file2.txt. log-file1.txt内容 2014-1-1    wangluqing 2014-1-2    root 2014-1-3   root 2014-1-4  wangluqing 2014-1-5  root 2014-1-6  wangluqing log-file2.txt内容 2014-1-1  root 2014-…
A tutorial on Principal Components Analysis 原著:Lindsay I Smith, A tutorial on Principal Components Analysis, February 26, 2002. 翻译:houchaoqun.时间:2017/01/18.出处:http://blog.csdn.net/houchaoqun_xmu  |  http://blog.csdn.net/Houchaoqun_XMU/article/details…
资料来源: <集体智慧编程>&网络 一.推荐系统 概述 定义 维基百科定义: 推荐系统属于资讯过滤的一种应用. 推荐系统能够将可能受喜好的资讯或实物(例如:电影.电视节目.音乐.书籍.新闻.图片.网页)推荐给使用者. 形成过程 随着互联网的发展,人们正处于一个信息爆炸的时代.相比于过去的信息匮乏,面对现阶段海量的信息数据,对信息的筛选和过滤成为了衡量一个系统好坏的重要指标.一个具有良好用户体验的系统,会将海量信息进行筛选.过滤,将用户最关注最感兴趣的信息展现在用户面前.这大大增加了系统…
第7章 集成方法 ensemble method 集成方法: ensemble method(元算法: meta algorithm) 概述 概念:是对其他算法进行组合的一种形式. 通俗来说: 当做重要决定时,大家可能都会考虑吸取多个专家而不只是一个人的意见. 机器学习处理问题时又何尝不是如此? 这就是集成方法背后的思想. 集成方法: 投票选举(bagging: 自举汇聚法 bootstrap aggregating): 是基于数据随机重抽样分类器构造的方法 再学习(boosting): 是基于…
本文档主要对如何使用GDAL提供的工具对FY3系列卫星数据进行校正处理.FY3系列卫星提供的数据一般是以HDF5格式下发,一个典型的FY3A和FY3B的数据文件名如下: FY3A_MERSI_GBAL_L1_20100321_0150_1000M_MS.HDF FY3B_MERSI_GBAL_L1_20130620_0600_1000M_MS.HDF 下面分为三个部分来对FY3系列数据校正进行处理,分别是数据预处理.构造子数据集和校正三个部分,下面分别进行详述. 该文档用到的GDAL[1]工具主…
1,概述 任务型对话系统越来越多的被应用到实际的场景中,例如siri,阿里小密这类的产品.通常任务型对话系统都是基于pipline的方式实现的,具体的流程图如下: 整个pipline由五个模块组成:语音识别:自然语言理解:对话管理:自然语言生成:语音合成.现在越来越多的产品还融入了知识库,主要是在对话管理模块引入.在这里除了语音识别和语音合成模块不属于自然语言处理范畴且属于可选项之外,其他的三个模块都是必要的. 自然语言理解(NLU):主要作用是对用户输入的句子或者语音识别的结果进行处理,提取用…
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 textCNN 模型 charCNN 模型 Bi-LSTM 模型 Bi-LSTM + Attention 模型 RCNN 模型 Adversarial LSTM 模型 Transformer 模型 ELMo 预训练模型 BERT 预训练模型 所有代码均在textClassifier仓库中. 2 数据集…
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 textCNN 模型 charCNN 模型 Bi-LSTM 模型 Bi-LSTM + Attention 模型 RCNN 模型 Adversarial LSTM 模型 Transformer 模型 ELMo 预训练模型 BERT 预训练模型 所有代码均在textClassifier仓库中. 2 数据集…
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 textCNN 模型 charCNN 模型 Bi-LSTM 模型 Bi-LSTM + Attention 模型 RCNN 模型 Adversarial LSTM 模型 Transformer 模型 ELMo 预训练模型 BERT 预训练模型 所有代码均在textClassifier仓库中. 2 数据集…
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 textCNN 模型 charCNN 模型 Bi-LSTM 模型 Bi-LSTM + Attention 模型 RCNN 模型 Adversarial LSTM 模型 Transformer 模型 ELMo 预训练模型 BERT 预训练模型 所有代码均在textClassifier仓库中. 2 数据集…
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 textCNN 模型 charCNN 模型 Bi-LSTM 模型 Bi-LSTM + Attention 模型 RCNN 模型 Adversarial LSTM 模型 Transformer 模型 ELMo 预训练模型 BERT 预训练模型 所有代码均在textClassifier仓库中. 2 数据集…
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 textCNN 模型 charCNN 模型 Bi-LSTM 模型 Bi-LSTM + Attention 模型 RCNN 模型 Adversarial LSTM 模型 Transformer 模型 ELMo 预训练模型 BERT 预训练模型 所有代码均在textClassifier仓库中. 2 数据集…
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 textCNN 模型 charCNN 模型 Bi-LSTM 模型 Bi-LSTM + Attention 模型 RCNN 模型 Adversarial LSTM 模型 Transformer 模型 ELMo 预训练模型 BERT 预训练模型 所有代码均在textClassifier仓库中. 2 数据集…
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 textCNN 模型 charCNN 模型 Bi-LSTM 模型 Bi-LSTM + Attention 模型 RCNN 模型 Adversarial LSTM 模型 Transformer 模型 ELMo 预训练模型 BERT 预训练模型 所有代码均在textClassifier仓库中. 2 数据集…
经过第一单元作业的训练,在做第二单元的作业的时候,要更加的有条理.但是第二次作业多线程的运行,带来了更多的运行的不确定性.呈现出来就是程序会出现由于线程安全问题带来的不可复现的bug.本单元的作业也让我更加认真的思考了性能和架构之间的关系,对于工程架构的设计有更进一步的认识. 历次作业分析和总结: 第一次作业:单电梯的傻瓜调度 类图如下: 第一次作业由于并没有性能要求并且刚刚接触多线程的运行,程序的结构简单并且多线程的各个线程之间并没有很多的交互.第一次作业设计中为了第二次作业的扩展,只是简单的…
本节我们以网址https://daxue.eol.cn/mingdan.shtml为初始链接,爬取教育部公布的正规高校名单. 思路: 1.首先以上面的地址开始链接,抓取到下面省份对应的链接. 2.在解析具体的省份源代码,获取数据.虽然山东和河南的网页结构和其他不同,我们也不做特殊处理,直接不做抓取即可:将抓取到的数据存储到mongodb数据库 3.对高校数据做数据分析及数据可视化. 抓取数据 1.定义数据结构 class daxueItem(scrapy.Item): # define the…
随机森林算法的理论知识 随机森林是一种有监督学习算法,是以决策树为基学习器的集成学习算法.随机森林非常简单,易于实现,计算开销也很小,但是它在分类和回归上表现出非常惊人的性能,因此,随机森林被誉为“代表集成学习技术水平的方法”. 一,随机森林的随机性体现在哪几个方面? 1,数据集的随机选取 从原始的数据集中采取有放回的抽样(bagging),构造子数据集,子数据集的数据量是和原始数据集相同的.不同子数据集的元素可以重复,同一个子数据集中的元素也可以重复. 2,待选特征的随机选取 与数据集的随机选…