转载:SVD】的更多相关文章

本文转载自他人: PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义.能在有限的篇幅把这个问题讲解的如此清晰,实属不易.原文举了一个简单的图像处理问题,简单形象,真心希望路过的各路朋友能从不同的角度阐述下自己对SVD实际意义的理解,比如 个性化推荐中应用了SVD,文本以及Web挖掘的时候也经常会用到SVD. 原文:We recommend a singular value decomposition 关于线性变换部分的一些知识可以猛戳这里  …
本文转载自他人: PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义.能在有限的篇幅把这个问题讲解的如此清晰,实属不易.原文举了一个简单的图像处理问题,简单形象,真心希望路过的各路朋友能从不同的角度阐述下自己对SVD实际意义的理解,比如 个性化推荐中应用了SVD,文本以及Web挖掘的时候也经常会用到SVD. 原文:We recommend a singular value decomposition 简介 SVD实际上是数学专业内容,但它现在…
转载请声明出处http://blog.csdn.net/zhongkejingwang/article/details/43053513 在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有需要补充的,特别是关于矩阵和映射之间的对应关系.前段时间看了国外的一篇文章,叫A Singularly Valuable Decomposition The SVD of a Matrix,觉得分析的特别好,把矩阵和空间关系对应了起来.本文就参考了该文并结合矩阵的相关知识把SVD原理梳理一下. SV…
转载请声明出处http://blog.csdn.net/zhongkejingwang/article/details/43053513 在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有需要补充的,特别是关于矩阵和映射之间的对应关系.前段时间看了国外的一篇文章,叫A Singularly Valuable Decomposition The SVD of a Matrix,觉得分析的特别好,把矩阵和空间关系对应了起来.本文就参考了该文并结合矩阵的相关知识把SVD原理梳理一下. SV…
http://www.bfcat.com/index.php/2012/03/svd-tutorial/ SVD分解(奇异值分解),本应是本科生就掌握的方法,然而却经常被忽视.实际上,SVD分解不但很直观,而且极其有用.SVD分解提供了一种方法将一个矩阵拆分成简单的,并且有意义的几块.它的几何解释可以看做将一个空间进行旋转,尺度拉伸,再旋转三步过程. 首先来看一个对角矩阵, 几何上, 我们将一个矩阵理解为对于点 (x, y) 从一个平面到另一个平面的映射: 下图显示了这个映射的效果: 平面被横向…
原文链接:奇异值分解(SVD)的计算方法 奇异值分解是线性代数中一种重要的矩阵分解方法,这篇文章通过一个具体的例子来说明如何对一个矩阵A进行奇异值分解. 首先,对于一个m*n的矩阵,如果存在正交矩阵U(m*m阶)和V(n*n阶),使得(1)式成立: \[A=U \Sigma V^T \tag{1}\] 则将式(1)的过程称为奇异值分解,其中\(\Sigma_{mn}=\begin{bmatrix}\Sigma_1 & 0 \\ 0 & 0\end{bmatrix}\),且 \(\Sigma…
PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义.能在有限的篇幅把 这个问题讲解的如此清晰,实属不易.原文举了一个简单的图像处理问题,简单形象,真心希望路过的各路朋友能从不同的角度阐述下自己对SVD实际意义的理 解,比如 个性化推荐中应用了SVD,文本以及Web挖掘的时候也经常会用到SVD. 原文:We recommend a singular value decomposition 关于线性变换部分的一些知识可以猛戳这里  奇异值分解(S…
ComputeSVD        在分布式矩阵有CoordinateMatirx, RowMatrix, IndexedRowMatrix三种.除了CoordinateMatrix之外,IndexedRowMatrix和RowMatrix都有computeSVD方法,并且CoordinateMatrix有toIndexedRowMatrix()方法和toRowMatrix()方法可以向IndexedRowMatrix 和RowMatrix两种矩阵类型转换.    因此主要对比 IndexedR…
奇异值分解(Singular Value Decomposition,以下简称SVD)是在机器学习领域广泛应用的算法,它不光可以用于降维算法中的特征分解,还可以用于推荐系统,以及自然语言处理等领域.是很多机器学习算法的基石.本文就对SVD的原理做一个总结,并讨论在在PCA降维算法中是如何运用运用SVD的. 1. 回顾特征值和特征向量 我们首先回顾下特征值和特征向量的定义如下:$$Ax=\lambda x$$ 其中A是一个$n \times n$的矩阵,$x$是一个$n$维向量,则我们说$\lam…
在很多线性代数问题中,如果我们首先思考若做SVD,情况将会怎样,那么问题可能会得到更好的理解[1].                                       --Lloyd N. Trefethen & David Bau, lll 为了讨论问题的方便以及实际中遇到的大多数问题,在这里我们仅限于讨论实数矩阵,注意,其中涉及到的结论也很容易将其扩展到复矩阵中(实际上,很多教材采用的是复矩阵的描述方式),另外,使用符号 x,y 等表示向量,A,B,Q等表示矩阵. 首先给出正交矩阵…
版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gmail.com 前言: 上一次写了关于PCA与LDA的 文章,PCA的实现一般有两种,一种是用特征值分解去实现的,一种是用奇异值分解去实现的.在上篇文章中便是基于特征值分解的一种解释.特征值和奇异值在 大部分人的印象中,往往是停留在纯粹的数学计算中.而且线性代数或者矩阵论里面,也很少讲任何跟特征值与…
转自:http://www.cnblogs.com/LeftNotEasy/archive/2011/01/19/svd-and-applications.html 版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gmail.com 前言: 上一次写了关于PCA与LDA的文章,PCA的实现一般有两种,一种是用特征值分解去实现的,一种是用奇异值分解去实…
版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gmail.com 前言: 上一次写了关于PCA与LDA的文章,PCA的实现一般有两种,一种是用特征值分解去实现的,一种是用奇异值分解去实现的.在上篇文章中便是基于特征值分解的一种解释.特征值和奇异值在大部分人的印象中,往往是停留在纯粹的数学计算中.而且线性代数或者矩阵论里面,也很少讲任何跟特征值与奇异…
原文:http://blog.sciencenet.cn/blog-696950-699432.html PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义.能在有限的篇幅把这个问题讲解的如此清晰,实属不易.原文举了一个简单的图像处理问题,简单形象,真心希望路过的各路朋友能从不同的角度阐述下自己对SVD实际意义的理解,比如 个性化推荐中应用了SVD,文本以及Web挖掘的时候也经常会用到SVD. 原文:We recommend a singul…
C++资源之不完全导引(完整版)- - 这文章太强了,我一定要转载,否则对不起观众,对不起自己.(liigo) 发信人: NULLNULL (空空), 信区: VC标  题: C++资源之不完全导引(转载)发信站: 武汉白云黄鹤站 (2005年05月05日01:42:54 星期四), 站内信件 C++资源之不完全导引(完整版) 来源:www.csdn.net 撰文:曾毅.陶文 声明:本文2004年5月首发于<CSDN开发高手>,版权归该杂志与<程序员>杂志社所有. --------…
前言: 上一次写了关于PCA与LDA的文章,PCA的实现一般有两种,一种是用特征值分解去实现的,一种是用奇异值分解去实现的.在上篇文章中便是基于特征值分解的一种解释.特征值和奇异值在大部分人的印象中,往往是停留在纯粹的数学计算中.而且线性代数或者矩阵论里面,也很少讲任何跟特征值与奇异值有关的应用背景.奇异值分解是一个有着很明显的物理意义的一种方法,它可以将一个比较复杂的矩阵用更小更简单的几个子矩阵的相乘来表示,这些小矩阵描述的是矩阵的重要的特性.就像是描述一个人一样,给别人描述说这个人长得浓眉大…
转载请注明出处:电子科技大学EClab——落叶花开http://www.cnblogs.com/nlp-yekai/p/3848528.html SVD,即奇异值分解,在自然语言处理中,用来做潜在语义分析即LSI,或者LSA.最早见文章 An introduction to latent semantic analysis SVD的有关资料,从很多大牛的博客中整理了一下,然后自己写了个python版本,放上来,跟大家分享- 关于SVD的讲解,参考博客 本文由LeftNotEasy发布于http:…
版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gmail.com 前言: 上一次写了关于PCA与LDA的文章,PCA的实现一般有两种,一种是用特征值分解去实现的,一种是用奇异值分解去实现的.在上篇文章中便是基于特征值分解的一种解释.特征值和奇异值在大部分人的印象中,往往是停留在纯粹的数学计算中.而且线性代数或者矩阵论里面,也很少讲任何跟特征值与奇异…
第14章 利用SVD简化数据 SVD 概述 奇异值分解(SVD, Singular Value Decomposition): 提取信息的一种方法,可以把 SVD 看成是从噪声数据中抽取相关特征.从生物信息学到金融学,SVD 是提取信息的强大工具. SVD 场景 信息检索-隐形语义检索(Lstent Semantic Indexing, LSI)或 隐形语义分析(Latent Semantic Analysis, LSA) 隐性语义索引:矩阵 = 文档 + 词语 是最早的 SVD 应用之一,我们…
一.SVD奇异值分解的定义 假设是一个的矩阵,如果存在一个分解: 其中为的酉矩阵,为的半正定对角矩阵,为的共轭转置矩阵,且为的酉矩阵.这样的分解称为的奇异值分解,对角线上的元素称为奇异值,称为左奇异矩阵,称为右奇异矩阵. 二.SVD奇异值分解与特征值分解的关系 特征值分解与SVD奇异值分解的目的都是提取一个矩阵最重要的特征.然而,特征值分解只适用于方阵,而SVD奇异值分解适用于任意的矩阵,不一定是方阵. 这里,和是方阵,和为单位矩阵,为的特征向量,为的特征向量.和的特征值为的奇异值的平方. 三.…
一步步教你轻松学奇异值分解SVD降维算法 (白宁超 2018年10月24日09:04:56 ) 摘要:奇异值分解(singular value decomposition)是线性代数中一种重要的矩阵分解,在生物信息学.信号处理.金融学.统计学等领域有重要应用,SVD都是提取信息的强度工具.在机器学习领域,很多应用与奇异值都有关系,比如推荐系统.数据压缩(以图像压缩为代表).搜索引擎语义层次检索的LSI等等.(本文原创,转载必须注明出处.) 目录 1 机器学习:一步步教你轻松学KNN模型算法 2 …
奇异值分解(Singular Value Decomposition,SVD)是在机器学习领域广泛应用的算法,它不光可以用于降维算法中的特征分解,还可以用于推荐系统,以及自然语言处理等领域.是很多机器学习算法的基石.本文就对SVD的原理做一个总结,并讨论在在PCA降维算法中是如何运用运用SVD的. 1. 特征值和特征向量 特征值和特征向量的定义如下: Ax=λx 其中A是一个n×n的矩阵,x是一个n维向量,则我们说λ是矩阵A的一个特征值,而x是矩阵A的特征值λ所对应的特征向量. 求出特征值和特征…
原贴地址: https://www.zhihu.com/question/316135639 作为一个 AI 方向的在读博士生,实在是过的蛮闹心,无意中逛知乎发现了这个帖子,发现很适合现在的自己,于是转载到这里,以作收藏. ---------------------------------------------------------------------------- 今年刚渡过了 CS PhD 的申请狂潮(本人是14级的学生),顺便回答一下吧.我在中国科大计算机本科期间,学生工作做的很多…
转载请声明出处 SVD奇异值分解概述 SVD不仅是一个数学问题,在工程应用中的很多地方都有它的身影,比如前面讲的PCA,掌握了SVD原理后再去看PCA那是相当简单的,在推荐系统方面,SVD更是名声大噪,将它应用于推荐系统的是Netflix大奖的获得者Koren,可以在Google上找到他写的文章:用SVD可以很容易得到任意矩阵的满秩分解,用满秩分解可以对数据做压缩.可以用SVD来证明对任意M*N的矩阵均存在如下分解: 这个可以应用在数据降维压缩上!在数据相关性特别大的情况下存储X和Y矩阵比存储A…
[作者:byeyear    Email:east3@163.com    首发www.cnblogs.com    转载请注明] 回忆学校的美好时光,一起来复习下曾经的课程吧. 1. SVD推荐ams上的一篇文章: http://www.ams.org/samplings/feature-column/fcarc-svd 下面的文字为简短摘要. 我们知道,如果矩阵A有一组特征值λk和特征向量vk,那么下式成立: Avk=λvk 矩阵的奇异值σ满足类似的式子,如下所示: Avk=σkuk 各单位…
转载自-柳如风-http://www.cnblogs.com/rongfangliu/p/opencvlink.html [收藏夹整理]OpenCV部分   OpenCV中文论坛 OpenCV论坛 opencv视频教程目录(初级) OpenCV 教程 Opencv感想和一些分享 tornadomeet 超牛的大神 [数字图像处理]C++读取.旋转和保存bmp图像文件编程实现 混合高斯模型算法 图像处理中的拉普拉斯算子 神经网络编程入门 bp神经网络及matlab实现 图像处理之图像快速旋转算法…
版权声明:本文为博主原创文章,未经博主允许不得转载. 原文地址http://blog.csdn.net/longxinchen_ml/article/details/51567960  目录(?)[-] 自然语言处理简介 词向量 基于SVD的方法 1 词-文档矩阵 2 基于窗口的共现矩阵X 基于迭代的方法 1 语言模型1-gram2-gram等等 2 连续词袋模型CBOM 3 Skip-Gram 模型 4 负面抽样Negative Sampling   作者:寒小阳 && 龙心尘 时间:2…
矩阵奇异值的物理意义是什么?如何更好地理解奇异值分解?下面我们用图片的例子来扼要分析. 矩阵的奇异值是一个数学意义上的概念,一般是由奇异值分解(Singular Value Decomposition,简称SVD分解)得到.如果要问奇异值表示什么物理意义,那么就必须考虑在不同的实际工程应用中奇异值所对应的含义.下面先尽量避开严格的数学符号推导,直观的从一张图片出发,让我们来看看奇异值代表什么意义. 这是女神上野树里(Ueno Juri)的一张照片,像素为高度450*宽度333.&amp;lt;i…
在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有需要补充的,特别是关于矩阵和映射之间的对应关系.前段时间看了国外的一篇文章,叫A Singularly Valuable Decomposition The SVD of a Matrix,觉得分析的特别好,把矩阵和空间关系对应了起来.本文就参考了该文并结合矩阵的相关知识把SVD原理梳理一下. SVD不仅是一个数学问题,在工程应用中的很多地方都有它的身影,比如前面讲的PCA,掌握了SVD原理后再去看PCA那是相当简单的,在推荐系统方面…
本文地址:https://www.cnblogs.com/kyxfx/articles/9392086.html actorization Meets the Neighborhood: a Multifaceted Collaborative Filtering Model 原作者 原论文地址:http://www.cs.rochester.edu/twiki/pub/Main/HarpSeminar/Factorization_Meets_the_Neighborhood-_a_Multif…