原文地址: http://www.dataguru.cn/article-13548-1.html ------------------------------------------------------------------------------- https://baijiahao.baidu.com/s?id=1625146459890383305&wfr=spider&for=pc https://link.springer.com/content/pdf/10.1023%…
原文地址: baijiahao.baidu.com/s?id=1600509777750939986&wfr=spider&for=pc 机器之心 18-05-15   14:26 --------------------------------------------------------------------------------------------- 上周,DeepMind在 Nature 发表论文,用 AI 复现大脑的导航功能. 今天,DeepMind 在 Nature…
原文地址: https://www.sohu.com/a/231895305_200424 --------------------------------------------------------------------------------------------- 前言 比起人类,深度学习算法已经在很多任务上的表现更优秀.但它们的学习效率很低.一个电子游戏,人类玩一个下午大概就会了,而算法得花上百个小时.Deep Mind认为,这可能是人类的元学习能力占了优势. Deep Mind…
Goals for the lecture: Introduction & overview of the key methods and developments. [Good starting point for you to start reading and understanding papers!] 原文链接: 目录 Probabilistic Graphical Models | Elements of Meta-Learning 01 Intro to Meta-Learning…
http://lib.csdn.net/article/aimachinelearning/68113 原文地址:http://blog.csdn.net/jinzhuojun/article/details/77144590 和其它的机器学习方向一样,强化学习(Reinforcement Learning)也有一些经典的实验场景,像Mountain-Car,Cart-Pole等.话说很久以前,因为没有统一的开发测试平台,大家都会自己实现,有用C/C++的,有用Python,还有用Matlab的…
原文地址: https://www.cnblogs.com/pinard/p/9756075.html ------------------------------------------------------------------------------------------------------- 在强化学习(八)价值函数的近似表示与Deep Q-Learning中,我们讲到了Deep Q-Learning(NIPS 2013)的算法和代码,在这个算法基础上,有很多Deep Q-Le…
在强化学习(八)价值函数的近似表示与Deep Q-Learning中,我们讲到了Deep Q-Learning(NIPS 2013)的算法和代码,在这个算法基础上,有很多Deep Q-Learning(以下简称DQN)的改进版,今天我们来讨论DQN的第一个改进版Nature DQN(NIPS 2015). 本章内容主要参考了ICML 2016的deep RL tutorial和Nature DQN的论文. 1. DQN(NIPS 2013)的问题 在上一篇我们已经讨论了DQN(NIPS 2013…
原文地址: https://www.cnblogs.com/pinard/p/9797695.html ---------------------------------------------------------------------------------------- 在强化学习(十)Double DQN (DDQN)中,我们讲到了DDQN使用两个Q网络,用当前Q网络计算最大Q值对应的动作,用目标Q网络计算这个最大动作对应的目标Q值,进而消除贪婪法带来的偏差.今天我们在DDQN的基础…
原文地址: https://www.cnblogs.com/pinard/p/9778063.html ----------------------------------------------------------------------------------------------- 在强化学习(九)Deep Q-Learning进阶之Nature DQN中,我们讨论了Nature DQN的算法流程,它通过使用两个相同的神经网络,以解决数据样本和网络训练之前的相关性.但是还是有其他值得…
原文地址: https://www.cnblogs.com/pinard/p/9714655.html ----------------------------------------------------------------------------------------- 在强化学习系列的前七篇里,我们主要讨论的都是规模比较小的强化学习问题求解算法.今天开始我们步入深度强化学习.这一篇关注于价值函数的近似表示和Deep Q-Learning算法. Deep Q-Learning这一篇对…