BZOJ2229—— [Zjoi2011]最小割】的更多相关文章

题解: 真是一道神题!!! 大家还是围观JZP的题解吧(网址找不到了...) 代码: #include<cstdio> #include<cstdlib> #include<cmath> #include<cstring> #include<algorithm> #include<iostream> #include<vector> #include<map> #include<set> #incl…
http://www.lydsy.com/JudgeOnline/problem.php?id=2229 最小割树介绍:http://blog.csdn.net/jyxjyx27/article/details/42750833 http://blog.csdn.net/miaomiao_ymxl/article/details/54931876 #include<queue> #include<cstdio> #include<cstring> #include<…
2229: [Zjoi2011]最小割 题目:传送门 题解: 一道非常好的题目啊!!! 蒟蒻的想法:暴力枚举点对跑最小割记录...绝对爆炸啊.... 开始怀疑是不是题目骗人...难道根本不用网络流???一看路牌....分治最小割?最小割树? 然后开始各种%论文... 简单来说吧,根据各种本蒟蒻不会证明的理论,那么:所有最小割都不是完全独立的,总共有n-1种(也就是树上的n-1条边)最小割 恰好和树的定义一样啊! 那么用一个solve递归函数来解决,一开始任意找两个点作为st和ed来最小割,然后分…
最小割 bzoj-2229 Zjoi-2011 题目大意:题目链接. 注释:略. 想法: 在这里给出最小割树的定义. 最小割树啊,就是这样一棵树.一个图的最小割树满足这棵树上任意两点之间的最小值就是原图中这两点之间的最小割. 这个性质显然是非常优秀的. 我们不妨这样假设,我么已经把最小割树求出来了,那么这个题就迎刃而解了. 我们可以直接枚举点对,然后暴力验证就可以直接枚举出所有的合法点对是吧. 那么问题来了,我们如何才能求出所有的合法的点对? 这就需要用到了最小割树的构建过程. 我们最小割树的构…
0.题目大意:求两点之间的最小割,然后找出其中小于x的数量 1.分析:最小割树水题,上个板子就好 #include <queue> #include <ctime> #include <cstdio> #include <cstring> #include <cstring> #include <algorithm> using namespace std; #define LL long long #define inf 21474…
题目描述 小白在图论课上学到了一个新的概念——最小割,下课后小白在笔记本上写下了如下这段话: “对于一个图,某个对图中结点的划分将图中所有结点分成两个部分,如果结点s,t不在同一个部分中,则称这个划分是关于s,t的割. 对于带权图来说,将所有顶点处在不同部分的边的权值相加所得到的值定义为这个割的容量,而s,t的最小割指的是在关于s,t的割中容量最小的割” 现给定一张无向图,小白有若干个形如“图中有多少对点它们的最小割的容量不超过x呢”的疑问,小蓝虽然很想回答这些问题,但小蓝最近忙着挖木块,于是作…
传送门 最小割树 算法 初始时把所有点放在一个集合 从中任选两个点出来跑原图中的最小割 然后按照 \(s\) 集合与 \(t\) 集合的归属把当前集合划分成两个集合,递归处理 这样一共跑了 \(n − 1\) 次最小割 可以证明图中任意一对点之间的最小割的数值都包含在这 \(n − 1\) 个数值当中 把每次求出的最小割看成是两个点之间的边,可以建出一棵树 定理1 任意三点之间的最小割一定是两个相等的较小值和一个较大值 证明 设任意三点 \(a, b, c\) 之间的最小割分别为 \(mincu…
传送门 这题是用最小割树做的(不明白最小割树是什么的可以去看看这一题->这里) 有了最小割树就很简单了……点数那么少……每次跑出一个最大流就暴力搞一遍就好了 //minamoto #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<queue> #define inf 0x3f3f3f3f using namespace std…
[BZOJ2229][ZJOI2011]最小割(网络流,最小割树) 题面 BZOJ 洛谷 题解 戳这里 那么实现过程就是任选两点跑最小割更新答案,然后把点集划分为和\(S\)联通以及与\(T\)联通. 然后再这两个点集里面分别任选两点跑最小割,递归下去即可. #include<iostream> #include<cstdio> #include<cstdlib> #include<cstring> #include<cmath> #includ…
[BZOJ2229][Zjoi2011]最小割 Description 小白在图论课上学到了一个新的概念——最小割,下课后小白在笔记本上写下了如下这段话: “对于一个图,某个对图中结点的划分将图中所有结点分成两个部分,如果结点s,t不在同一个部分中,则称这个划分是关于s,t的割. 对于带权图来说,将所有顶点处在不同部分的边的权值相加所得到的值定义为这个割的容量,而s,t的最小割指的是在关于s,t的割中容量最小的割” 现给定一张无向图,小白有若干个形如“图中有多少对点它们的最小割的容量不超过x呢”…
2229: [Zjoi2011]最小割 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1565  Solved: 560[Submit][Status][Discuss] Description 小白在图论课上学到了一个新的概念——最小割,下课后小白在笔记本上写下了如下这段话: “对于一个图,某个对图中结点的划分将图中所有结点分成两个部分,如果结点s,t不在同一个部分中,则称这个划分是关于s,t的割. 对于带权图来说,将所有顶点处在不同部分的边的…
题面: [ZJOI2011]最小割 [CQOI2016]不同的最小割 题解: 其实这两道是同一道题.... 最小割是用的dinic,不同的最小割是用的isap 其实都是分治求最小割 简单讲讲思路吧 就是首先全部的点都在一个集合里,然后随意定两个点为s和t,这里默认是第一个和最后一个. 然后找到最小割,最小割将整张图分为了s集和t集,于是我们再用这个最小割更新跨集合点对之间的最小割. 这个很好理解,因为当前找到的最小割将s集和t集分开了,显然对于任意一组跨集合的点对而言,当前最小割都是一个可能的最…
http://www.lydsy.com/JudgeOnline/problem.php?id=2229 (题目链接) 题意 给出一张无向图,$q$组询问,每次询问最小割不大于$c$的点对数量. Solution orz:DaD3zZ 最小割树什么的好神,但是看不懂啊,不如直接撸代码= =.根据网上神犇的理论,貌似最小割的数目不会超过$n-1$个,所以可以将它构成一棵最小割树. 不过我们的实现并不需要考虑怎么构树.直接暴力的话就是枚举点对,要做$n^2$次$Dinic$,我们通过选择一些优秀的点…
题目描述 小白在图论课上学到了一个新的概念——最小割,下课后小白在笔记本上写下了如下这段话: “对于一个图,某个对图中结点的划分将图中所有结点分成两个部分,如果结点s,t不在同一个部分中,则称这个划分是关于s,t的割. 对于带权图来说,将所有顶点处在不同部分的边的权值相加所得到的值定义为这个割的容量,而s,t的最小割指的是在关于s,t的割中容量最小的割” 现给定一张无向图,小白有若干个形如“图中有多少对点它们的最小割的容量不超过x呢”的疑问,小蓝虽然很想回答这些问题,但小蓝最近忙着挖木块,于是作…
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2229 [题意] 回答若干个关于割不超过x的点对数目的询问. [思路] [最小割最多有n-1个,这n-1个最小割构成一个最小割树] 分治法寻找n-1个最小割.对于当前点集X,任选两点为ST做最小割,然后找出与S相连的所有点和与T相连的所有点构成S集与T集,更新S集与T集的最小割.然后递归处理两个集合. [代码] #include<set> #include<cmath>…
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2229 题解: 首先先去看看这个博客:http://blog.csdn.net/jyxjyx27/article/details/42750833非常不错的,可以对最小割树有一个简单的感性认识. 由于求最小割树感觉很麻烦,并且本题的点数的数据规模不大,所以就不需要构造出最小割树,只需要求出所有的 ans[i][j]:i->j的最小割. 即采用分治,求出 n-1个最小割,并在每次求完最小割后,…
Description 小白在图论课上学到了一个新的概念--最小割,下课后小白在笔记本上写下了如下这段话: "对于一个图,某个对图中结点的划分将图中所有结点分成两个部分,如果结点s,t不在同一个部分中,则称这个划分是关于s,t的割. 对于带权图来说,将所有顶点处在不同部分的边的权值相加所得到的值定义为这个割的容量,而s,t的最小割指的是在关于s,t的割中容量最小的割" 现给定一张无向图,小白有若干个形如"图中有多少对点它们的最小割的容量不超过x呢"的疑问,小蓝虽然很…
题解: 以前看过,思维挺神奇的一道题目 首先可以证明最小割是不能相交的 那么我们就可以找到任意两点求一次最小割然后将割的两边分开来再递归这个过程 另外最小割就是vis=0与vis=1之间的连边 分治的时候把一个局部变量写了全局变量还有83??? 找个好久.. 代码: #include <bits/stdc++.h> using namespace std; #define maxn 3000 #define INF 1e9 ][],l,n,m,s,t; struct { int a,b,c,f…
题目链接 题意:给定一张无向图,求任意两点之间的最小割. 在所有点中任选两个点作为源点\(S\).汇点\(T\),求它们之间的最小割\(ans\),并把原图分成两个点集\(S',T'\),用\(ans\)更新两个点集间的答案. 然后再分别对两个点集\(S',T'\)重复这个过程,直到集合中只剩一个点. 这样就可以求出所有点对的最小割,且得到了一棵最小割树.可以证明这是对的. 注意每次最小割都是对全图做的. 每次更新答案也是对所有点更新答案(是把原图分成两部分). 证明(具体见这): 可以证明一个…
这个算法详见http://www.cnblogs.com/lokiii/p/8191573.html 求出两两之间最小割之后暴力统计即可 #include<iostream> #include<cstdio> #include<cstring> #include<queue> using namespace std; const int N=205,inf=1e9; int T,n,m,Q,a[N],ans[N][N],h[N],cnt,s,t,q[N],l…
Description 小白在图论课上学到了一个新的概念——最小割,下课后小白在笔记本上写下了如下这段话: “对于一个图,某个对图中结点的划分将图中所有结点分成两个部分,如果结点s,t不在同一个部分中,则称这个划分是关于s,t的割. 对于带权图来说,将所有顶点处在不同部分的边的权值相加所得到的值定义为这个割的容量,而s,t的最小割指的是在关于s,t的割中容量最小的割” 现给定一张无向图,小白有若干个形如“图中有多少对点它们的最小割的容量不超过x呢”的疑问,小蓝虽然很想回答这些问题,但小蓝最近忙着…
洛谷 题意: 给出一个无向图,之后有\(q,q\leq 30\)组询问,每组询问有一个\(x\),回答有多少点对\((a,b)\)其\(a-b\)最小割不超过\(x\). 思路: 这个题做法要最小割树...这个东西大概就是对于当前点集任意选择两个点\(s,t\)作为源点和汇点,然后求出当前最小割,之后两个集合连边为最小割权值:然后两个集合递归下去处理. 显然最后集合中只会存在一个元素,那么最后形成的就是一颗树. 最小割树有一个性质:对于树上\(u,v\)两点,其路径上的边权最小值即为两点的最小割…
题面 求所有点对的最小割中<=c的数量 分析 分治最小割板题 首先,注意这样一个事实:如果(X,Y)是某个s1-t1最小割,(Z,W)是某个s2-t2最小割,那么X∩Z.X∩W.Y∩Z.Y∩W这四项不可能均非空.也就是说,最小割不可能相互跨立. 这个蕴含了,最多一共有N-1个不同的s-t最小割.只需把这些割找出来即可. 寻找的方法:首先,在V中任意找两个点a,b,求最大流,把V划分为割X-Y,之后对X.Y分别递归地进行划分.这样就能得到N-1个割了. (摘自hzwer的博客) CODE #inc…
链接1 链接2 题意简述 第一个题 : 问图中有多少不同的最小割数值 第二个题 : \(q\) 次询问图中多少对点对之间的最小割小于 \(x\) . Sol 两个都是模板题就放一起了. 求完最小割树直接暴力 \(O(n^2)\) 弄出所有点对间最小割 , 然后该干嘛干嘛. 最小割树的构建: \(Gemory-Hu\; Tree\)算法 对于一个 \(n\) 个节点的图 , 图中所有点对不同的最小割数目最多只有 \(n-1\) 个 , 可以证明存在一棵树 , 使得两点在这棵树上的最小割即为原图中的…
题目描述 小白在图论课上学到了一个新的概念--最小割,下课后小白在笔记本上写下了如下这段话: 对于一个图,某个对图中结点的划分将图中所有结点分成两个部分,如果结点 s 和 t 不在同一个部分中,则称这个划分是关于 s,t 的割.对于带权图来说,将所有顶点处在不同部分的边的权值相加所得到的值定义为这个割的容量,而 s,t的最小割指的是在关于 s,t的割中容量最小的割. 现给定一张无向图,小白有若干个形如"图中有多少个无序点对的最小割的容量不超过 x "的疑问,小蓝虽然很想回答这些问题,但…
最小割树裸题 建树后,以每个点为根跑DFS求出距离矩阵,然后暴力回答询问即可 #include <bits/stdc++.h> using namespace std; #define int long long const int maxn=6e2; const int maxm=4e4; const int inf=1e13; int n,m,q; //for the target graph vector <pair<int,int> > g[maxn]; voi…
最小割树(Gomory-Hu Tree) 前置知识 Gomory-Hu Tree是用来解决无向图最小割的问题的,所以我们需要了解无向图最小割的定义 和有向图类似,无向图上两点(x,y)的割定义为一个边集E,满足去掉该边集后x,y不联通.最小割即为所有的割中权值之和最小的割 通过这条割我们把点集划为两个部分,x所在的一个记为\(V_x\),y所在的一个记为\(V_y\) 定义 首先我们知道,一个n个点的无向图上,两点之间本质不同的最小割只有n-1种,因此一定存在一棵树,满足树上两点的最小割等于原图…
冷门知识点…… 原题: 小白在图论课上学到了一个新的概念——最小割,下课后小白在笔记本上写下了如下这段话: “对于一个图,某个对图中结点的划分将图中所有结点分成两个部分,如果结点s,t不在同一个部分中,则称这个划分是关于s,t的割. 对于带权图来说,将所有顶点处在不同部分的边的权值相加所得到的值定义为这个割的容量,而s,t的最小割指的是在关于s,t的割中容量最小的割” 现给定一张无向图,小白有若干个形如“图中有多少对点它们的最小割的容量不超过x呢”的疑问,小蓝虽然很想回答这些问题,但小蓝最近忙着…
小白在图论课上学到了一个新的概念--最小割,下课后小白在笔记本上写下了如下这段话: "对于一个图,某个对图中结点的划分将图中所有结点分成两个部分,如果结点\(s,t\)不在同一个部分中,则称这个划分是关于\(s,t\)的割. 对于带权图来说,将所有顶点处在不同部分的边的权值相加所得到的值定义为这个割的容量,而\(s,t\)的最小割指的是在关于\(s,t\)的割中容量最小的割" 现给定一张无向图,小白有若干个形如"图中有多少对点它们的最小割的容量不超过\(x\)呢"的…
题面 传送门 思路 首先我们明确一点:这道题不是让你把$n^2$个最小割跑一遍[废话] 但是最小割过程是必要的,因为最小割并没有别的效率更高的算法(Stoer-Wagner之类的?) 那我们就要尽量找办法减少做最大流(求最小割)的次数 最小割树 就像最小生成树一样,最小割也有自己的生成树 我们新建立一个有n个点,没有边的无向图 我们在原无向图中任选两个点S,T,求出S-T最小割,那么可以在S-T中间加一条权值等于最小割值得无向边 然后,分别对S属于的点集合和T属于的点集合递归做上面的过程,直到当…