C++ GPU && CPU】的更多相关文章

转自:http://blog.csdn.net/v_JULY_v/article/details/52810219?locationNum=3&fps=1 目录(?)[-] 教你从头到尾利用DQN自动玩flappy bird全程命令提示GPUCPU 前言 第一部分GPU版教程 1NVIDIA驱动CUDAcudnn安装 下载相应文件后续 使用下载地址 11 Install NVIDIA Driver 安装NVIDIA驱动 12 Install CUDA 安装CUDA 13 Install cuDN…
TensorFlow指定GPU/CPU进行训练和输出devices信息 1.在tensorflow代码中指定GPU/CPU进行训练 with tf.device('/gpu:0'): .... with tf.device('/gpu:1'): ... with tf.device('/cpu:0'): ... 2.输出devices的信息 在指定devices的时候往往不知道具体的设备信息,这时可用下面的代码查看对应的信息 进入Python环境 from tensorflow.python.c…
#include <amp.h> #include <iostream> #include <winbase.h> //操作系统的底层文件 using namespace concurrency; using namespace std; void main () { ,, , ,, , ,, , }; array_view<,a ); //GPU计算结构,av存储到GPU显存,根据数组初始化 // restrict 定向到GPU // 直接操作AV,(index…
首先,导入os,再按照PCI_BUS_ID顺序,从0开始排列GPU, import os os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" 然后就可以选择用哪一个或者那几个GPU运行: os.environ[”zCUDA_VISIBLE_DEVICES”] = "0" 用0号GPU,即'/gpu:0'运行: os.environ[“CUDA_VISIBLE_DEVICES”] = “0,1” 用0号和1…
原文作者:aircraft 原文链接:https://www.cnblogs.com/DOMLX/p/9747019.html 基本开发环境搭建 1. Microsoft Windows 版本 关于Windows的版本选择,本人强烈建议对于部分高性能的新机器采用Windows 10作为基础环境,部分老旧笔记本或低性能机器采用Windows 7即可,本文环境将以Windows 10作为开发环境进行描述.对于Windows 10的发行版本选择,笔者建议采用Windows_10_enterprise_…
参考:http://www.echojb.com/cuda/2017/03/15/350138.html https://www.zhihu.com/question/56111727 第一步:首先确定你当前的window版本(win 7,win8,win10),操作系统(32,64),是否GPU等.本人CPU GPU均配置完成,但是如果要做深度实验的话,除非你cpu配置特别高,否则还是建议GPU来跑. 第二步:确定好了当前的计算机情况,下面就开始下载相关文件 (1) 首先确定自己是否安装vs2…
一.计算核心增加 二者都由寄存器.控制器.逻辑单元构成,但比例很大不同,决定了CPU擅长指令处理,函数调用上:GPU在数据处理(算数运算/逻辑运算)强力很多. NIVIDA基于Maxwell构架的GPU代号GM200的显示核心主要由4个图形处理集群(GPC ),16个流处理集群(SMM)和4个64bit显存控制器组成.每个流处理集群中包含了4个调度器(Warp),每个调度器又控制着32个逻辑计算核心(Core),Core是实现逻辑计算的基本单元. GPU处理数据过程: 从CPU得到数据处理指令.…
作者:虫子君 链接:https://www.zhihu.com/question/19903344/answer/96081382 来源:知乎 著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 看了好多,觉得下面这个介绍才是我想要的以及能看明白的,CPU和GPU的设计区别CPU和GPU之所以大不相同,是由于其设计目标的不同,它们分别针对了两种不同的应用场景.CPU需要很强的通用性来处理各种不同的数据类型,同时又要逻辑判断又会引入大量的分支跳转和中断的处理.这些都使得CPU的内…
GPU的功耗远远超过CPUCache, local memory: CPU > GPU Threads(线程数): GPU > CPURegisters: GPU > CPU 多寄存器可以支持非常多的Thread,thread需要用到register,thread数目大,register也必须得跟着很大才行.SIMD Unit(单指令多数据流,以同步方式,在同一时间内执行同一条指令): GPU > CPU. 在计算机上运行的程序从性能的角度来说大致可分为三类:(1) I/O int…
作者:知乎用户链接:https://www.zhihu.com/question/19903344/answer/96081382来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. CPU和GPU之所以大不相同,是由于其设计目标的不同,它们分别针对了两种不同的应用场景.CPU需要很强的通用性来处理各种不同的数据类型,同时又要逻辑判断又会引入大量的分支跳转和中断的处理.这些都使得CPU的内部结构异常复杂.而GPU面对的则是类型高度统一的.相互无依赖的大规模数据和不需要被…
cpu和gpu的区别和联系是什么 一.总结 一句话总结:CPU:复杂任务,核少,做串行,计算能力只是CPU很小的一部分,处理复杂逻辑: GPU:简单任务,核多,做并行(大吞吐量),做显卡的图象单元计算. 从硬件来分析,CPU和GPU似乎很像,都有内存.cache.ALU.CU,都有着很多的核心,但是二者是有区别的. 但以核心为例,CPU的核心比较重,可以用来处理非常复杂的控制逻辑,预测分支.乱序执行.多级流水等等CPU做得非常好,这样对串行程序的优化做得非常好: 但是GPU的核心就是比较轻,用于…
3.2.1 CPU计算能力分析 这里CPU计算能力用Intel的Haswell架构进行分析,Haswell架构上计算单元有2个FMA(fused multiply-add),每个FMA可以对256bit数据在一个时钟周期中做一次乘运算和一次加运算,所以对应32bit单精度浮点计算能力为:(256bit/32bit) 2(FMA) 2(乘和加) = 32 SP FLOPs/cycle,即每个时钟周期可以做32个单精度浮点计算. CPU峰值浮点计算性能 = CPU核数 CPU频率 每周期执行的浮点操…
假设我们只保存了模型的参数(model.state_dict())到文件名为modelparameters.pth, model = Net() 1. cpu -> cpu或者gpu -> gpu: checkpoint = torch.load('modelparameters.pth') model.load_state_dict(checkpoint) 2. cpu -> gpu 1 torch.load('modelparameters.pth', map_location=la…
CPU与GPU,我们应该使用哪个? CPU与GPU CPU即中央处理器,GPU即图形处理器. 两者的相同之处:两者都有总线和外界联系,有自己的缓存体系,以及数字和逻辑运算单元 两者的区别之处:在于存在于片内的缓存体系和数字逻辑运算单元的结构差异:CPU虽然有多核,但总数没有超过两位数,每个核都有足够大的缓存和足够多的数字和逻辑运算单元,并辅助有很多加速分支判断甚至更复杂的逻辑判断的硬件:GPU的核数远超CPU,被称为众核(NVIDIA Fermi有512个核).每个核拥有的缓存大小相对小,数字逻…
CPU,GPU,GPGPU 1.基本概念 1.1  GPU 图形处理器(bai英语:Graphics Processing Unit,缩写:GPU),又称显示核心.视觉du处理器.zhi显示芯片,是一种专门在个人电脑.工dao作站.游戏机和一些移动设备(如平板电脑.智能手机等)上图像运算工作的微处理器. 1.2  CPU 中央处理器(CPU,Central Processing Unit)是一块超大规模的集成电路,是一台计算机的运算核心(Core)和控制核心( Control Unit).它的功…
上一篇文章提到了数据挖掘.机器学习.深度学习的区别:http://www.cnblogs.com/charlesblc/p/6159355.html 深度学习具体的内容可以看这里: 参考了这篇文章:https://zhuanlan.zhihu.com/p/20582907?refer=wangchuan  <王川: 深度学习有多深, 学了究竟有几分? (一)> 笔记:神经网络的研究,因为人工智能的一位大牛Marvin Minsky的不看好,并且出书说明其局限性,而出现二十年的长期低潮.   在…
CUDA优化的最终目的是:在最短的时间内,在允许的误差范围内完成给定的计算任务.在这里,“最短的时间”是指整个程序运行的时间,更侧重于计算的吞吐量,而不是单个数据的延迟.在开始考虑使用GPU和CPU协同计算之前,应该先粗略的评估使用CUDA是否能达到预想的效果,包括以下几个方面: 精度:目前GPU的单精度性能要远远超过双精度性能,整数乘法.求模.求余等运算的指令吞吐量也较为有限.在科学计算中,由于需要处理的数据量巨大,往往采用双精度或者四精度才能获得可靠的结果,目前的Tesla架构还不能很好的满…
设备 GPU CPU 每秒像素填充率 每秒三角形生成 内存 iPhone4 PowerVR SGX 535 ARM Cortex-A8 800M     512M iPod touch 4 PowerVR SGX 535 ARM Cortex-A8 800M     256M iPhone4S PowerVR SGX543MP2 ARM Cortex-A9 800M     512M iPad2 PowerVR SGX543MP2 ARM Cortex-A9 1G 2G 67M 512M iPh…
CPU和GPU之所以大不相同,是由于其设计目标的不同,它们分别针对了两种不同的应用场景.CPU需要很强的通用性来处理各种不同的数据类型,同时又要逻辑判断又会引入大量的分支跳转和中断的处理.这些都使得CPU的内部结构异常复杂.而GPU面对的则是类型高度统一的.相互无依赖的大规模数据和不需要被打断的纯净的计算环境. 于是CPU和GPU就呈现出非常不同的架构(示意图): 图片来自nVidia CUDA文档.其中绿色的是计算单元,橙红色的是存储单元,橙黄色的是控制单元. GPU采用了数量众多的计算单元和…
一.传统的提高计算速度的方法 faster clocks (设置更快的时钟) more work over per clock cycle(每个时钟周期做更多的工作) more processors(更多处理器) 二.CPU & GPU CPU更加侧重执行时间,做到延时小 GPU则侧重吞吐量,能够执行大量的计算 更形象的理解就是假如我们载一群人去北京,CPU就像那种敞篷跑车一样速度贼快,但是一次只能坐两个人,而GPU就像是大巴车一样,虽然可能速度不如跑车,但是一次能载超多人. 总结起来相比于CP…
关于多gpu训练,tf并没有给太多的学习资料,比较官方的只有:tensorflow-models/tutorials/image/cifar10/cifar10_multi_gpu_train.py 但代码比较简单,只是针对cifar做了数据并行的多gpu训练,利用到的layer.activation类型不多,针对更复杂网络的情况,并没有给出指导.自己摸了不少坑之后,算是基本走通了,在此记录下 一.思路 单GPU时,思路很简单,前向.后向都在一个GPU上进行,模型参数更新时只涉及一个GPU.多G…
一.传统的提高计算速度的方法 faster clocks (设置更快的时钟) more work over per clock cycle(每个时钟周期做更多的工作) more processors(更多处理器) 二.CPU & GPU CPU更加侧重执行时间,做到延时小 GPU则侧重吞吐量,能够执行大量的计算 更形象的理解就是假如我们载一群人去北京,CPU就像那种敞篷跑车一样速度贼快,但是一次只能坐两个人,而GPU就像是大巴车一样,虽然可能速度不如跑车,但是一次能载超多人. 总结起来相比于CP…
http://blog.csdn.net/jerr__y/article/details/53695567 前言:本文主要介绍如何在 ubuntu 系统中配置 GPU 版本的 tensorflow 环境.主要包括: - cuda 安装 - cudnn 安装 - tensorflow 安装 - keras 安装 其中,cuda 安装这部分是最重要的,cuda 安装好了以后,不管是 tensorflow 还是其他的深度学习框架都可以轻松地进行配置. 我的环境: Ubuntu14.04 + TITAN…
版权声明:本文由薛梁原创文章,转载请注明出处: 文章原文链接:https://www.qcloud.com/community/article/628340001485134638 来源:腾云阁 https://www.qcloud.com/community FPGA(Field Programmable Gate Array)现场可编程门阵列,作为 ASIC 领域中的一种半定制电路而出现已有 30 年的历史了,它既解决了定制电路的无法改变功能的不足,又克服了原有可编程器件门电路数有限的缺点,…
<CUDA并行程序设计:GPU编程指南> 基本信息 原书名:CUDA Programming:A Developer’s Guide to Parallel Computing with GPUs 作者: (美)Shane Cook 译者: 苏统华 李东 李松泽 魏通 丛书名: 高性能计算系列丛书 出版社:机械工业出版社 ISBN:9787111448617 上架时间:2014-1-10 出版日期:2014 年1月 开本:16开 页码:1 版次:1-1 所属分类:计算机 更多关于>>…
pytorch------cpu与gpu load时相互转化 torch.load(map_location=)学习 将gpu改为cpu时,遇到一个报错:RuntimeError: Attempting to deserialize object on a CUDA device but torch.cuda.is_available() is False. If you are running on a CPU-only machine, please use torch.load with…
将gpu改为cpu时,遇到一个报错: RuntimeError: Attempting to deserialize object on a CUDA device but torch.cuda.is_available() is False. If you are running on a CPU-only machine, please use torch.load with map_location='cpu' to map your storages to the CPU. 此时改为:…
Ubuntu16.04下配置caffe(仅CPU)  参考:http://blog.csdn.net/zt_1995/article/details/56283249   第二次配置caffe环境,依旧把之前犯过的错误重新走了一遍,不会配置的地方还是忘了,所以打算通过博客记录下来,方便以后学习使用. 1.安装依赖包 $ sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-s…
目录 一.导言 1.1 为何要了解GPU? 1.2 内容要点 1.3 带着问题阅读 二.GPU概述 2.1 GPU是什么? 2.2 GPU历史 2.2.1 NV GPU发展史 2.2.2 NV GPU架构发展史 2.3 GPU的功能 三.GPU物理架构 3.1 GPU宏观物理结构 3.2 GPU微观物理结构 3.2.1 NVidia Tesla架构 3.2.2 NVidia Fermi架构 3.2.3 NVidia Maxwell架构 3.2.4 NVidia Kepler架构 3.2.5 NV…
处理器史话 | 服务器CPU市场的战役, AMD.Intel和ARM的厮杀 https://www.eefocus.com/mcu-dsp/377300   说完了个性鲜明的消费类电子,接下来聊一聊通用的“巨无霸”型 CPU——服务器 CPU.服务器 CPU,顾名思义,就是在服务器上使用的 CPU. 众所周知,服务器是网络中的重要设备,要接受少至几人.几十人,或者多至成千上万人的访问,因此,对服务器具有大数据量的快速吞吐.超强的稳定性.长时间运行等严格要求.作为计算机“大脑”的 CPU,是衡量服…