希望在spark-shell中测试集群方式的elasticsearch操作, # 1 首先下载相关的jar # 2 启动spark-shell时用--jars ./bin/spark-shell –master spark://master:7077 –jars /usr/local/spark-1.6.2/lib/elasticsearch-spark_2.10-2.2.0.jar # 3 需要用conf设置es.nodes val conf = new SparkConf() conf.se…
一.修改配置文件(hadoop目录/etc/hadoop/配置文件) 1.修改hadoop-env.sh,指定JAVA_HOME 修改完毕后 2.修改core-site.xml <configuration> <!-- 指定hadoop运行时产生的临时文件存储目录 --> <property> <name>hadoop.tmp.dir</name> <value>/opt/module/hadoop-3.1.1/data/tmp<…
Spark 基础入门,集群搭建以及Spark Shell 主要借助Spark基础的PPT,再加上实际的动手操作来加强概念的理解和实践. Spark 安装部署 理论已经了解的差不多了,接下来是实际动手实验: 练习1 利用Spark Shell(本机模式) 完成WordCount spark-shell 进行Spark-shell本机模式 第一步:通过文件方式导入数据 scala> val rdd1 = sc.textFile("file:///tmp/wordcount.txt")…
Spark集群方式搭建结构如图所示,按照主从方式.…
配置 hadoop+yarn+hbase+storm+kafka+spark+zookeeper 高可用集群,同时安装相关组建:JDK,MySQL,Hive,Flume 文章目录 环境介绍 节点介绍 集群介绍 软件版本介绍 前期准备 相关配置 新建用户 centos 添加sudo权限 更改用户名 主机名与IP映射 显示当前文件的绝对路径 ssh免密登录 关闭防火墙 两个批处理脚本 批分发指令脚本(xcall.sh) 批同步脚本(xsync.sh):类似于 scp 指令 集群环境搭建 安装JDK…
一.简介 Spark 的一大好处就是可以通过增加机器数量并使用集群模式运行,来扩展程序的计算能力.好在编写用于在集群上并行执行的 Spark 应用所使用的 API 跟本地单机模式下的完全一样.也就是说,你可以在小数据集上利用本地模式快速开发并验证你的应用,然后无需修改代码就可以在大规模集群上运行. 首先介绍分布式 Spark 应用的运行环境架构,然后讨论在集群上运行 Spark 应用时的一些配置项.Spark 可以在各种各样的集群管理器(Hadoop YARN.Apache Mesos,还有Sp…
一.前期准备 前期的环境准备,在Linux系统下要有Hadoop系统,spark伪分布式或者分布式,具体的教程可以查阅我的这两篇博客: Hadoop2.0伪分布式平台环境搭建 Spark2.4.0伪分布式环境搭建 然后在spark伪分布式的环境下必须出现如下八个节点才算spark环境搭建好. 然后再在本地windows系统下有一个简单的词频统计程序. import org.apache.spark.SparkConf import org.apache.spark.SparkContext im…
超详细,多图文介绍redis集群方式并搭建redis伪集群 超多图文,对新手友好度极好.敲命令的过程中,难免会敲错,但为了截好一张合适的图,一旦出现一点问题,为了好的演示效果,就要从头开始敲.且看且珍惜. 再认识redis集群前,若想先知道redis单机版的可查看,springboot整合redis.好了,下面开始了. 每个redis实例可称为一个节点,安装redis并以默认端口启动是节点,不关闭,以另一个端口启动,是一个新节点.在另一台机器安装redis并启动,也是一个新节点. 节点分为主节点…
Idea里面远程提交spark任务到yarn集群 1.本地idea远程提交到yarn集群 2.运行过程中可能会遇到的问题 2.1首先需要把yarn-site.xml,core-site.xml,hdfs-site.xml放到resource下面,因为程序运行的时候需要这些环境 2.2权限问题 2.3缺失环境变量 2.4 没有设置driver的ip 2.5保证自己的电脑和虚拟机在同一个网段内,而且要关闭自己电脑的防火墙,不然可能会出现连接不上的情况. 作者:JasonLee 1.本地idea远程提…
Spark Streaming揭秘 Day31 集群模式下SparkStreaming日志分析(续) 今天延续昨天的内容,主要对为什么一个处理会分解成多个Job执行进行解析. 让我们跟踪下Job调用过程. 从框架代码开始 我们从生成Job开始,generateJobs方法产生了Job,之后,提交了一个JobSet来进行处理. JobSet会根据输出情况来确定Job数量,有多少个输出就有多少个Job,在我们的演示代码中,只有一个outputDStream,所以job是一个.jobExecutor…