libsvm参数选择】的更多相关文章

libSVM 参数选择  [预测标签,准确率,决策值]=svmpredict(测试标签,测试数据,训练的模型);    原文参考:http://blog.csdn.net/carson2005/article/details/6539192 关于SVM参数c&g选取的总结帖[matlab-libsvm]:http://www.ilovematlab.cn/thread-47819-1-1.html  原文见下方 需要提醒的是,libSVM支持多类分类问题,当有k个待分类问题时,libSVM构建k…
以前接触过libsvm,现在算在实际的应用中学习 LIBSVM 使用的一般步骤是: 1)按照LIBSVM软件包所要求的格式准备数据集: 2)对数据进行简单的缩放操作: 3)首要考虑选用RBF 核函数: 4)采用交叉验证选择最佳参数C与g : 5)采用最佳参数C与g 对整个训练集进行训练获取支持向量机模型: 6)利用获取的模型进行测试与预测. 参数认识 LIBSVM使用的数据格式该软件使用的训练数据和检验数据文件格式如下: [label] [index1]:[value1] [index2]:[v…
首先说交叉验证.交叉验证(Cross validation)是一种评估统计分析.机器学习算法对独立于训练数据的数据集的泛化能力(generalize), 能够避免过拟合问题.交叉验证一般要尽量满足:1)训练集的比例要足够多,一般大于一半2)训练集和测试集要均匀抽样 交叉验证主要分成以下几类: 1)Double cross-validationDouble cross-validation也称2-fold cross-validation(2-CV),作法是将数据集分成两个相等大小的子集,进行两回…
直接conda install libsvm安装的不完整,缺几个.py文件. 第一种安装方法: 下载:http://www.csie.ntu.edu.tw/~cjlin/cgi-bin/libsvm.cgi?+http://www.csie.ntu.edu.tw/~cjlin/libsvm+tar.gz 在/home/common/anaconda3/lib/python3.6/site-packages下创建一个libsvm文件夹,并将libsvm.so.2复制到到libsvm文件夹中(lib…
Libliner 中的-s 参数选择:primal 和dual LIBLINEAR的优化算法主要分为两大类,即求解原问题(primal problem)和对偶问题(dual problem).求解原问题使用的是TRON的优化算法,对偶问题使用的是Coordinate Descent优化算法.总的来说,两个算法的优化效率都较高,但还是有各自更加擅长的场景.对于样本量不大,但是维度特别高的场景,如文本分类,更适合对偶问题求解,因为由于样本量小,计算出来的Kernel Matrix也不大,后面的优化也…
http://ju.outofmemory.cn/entry/119152 http://www.cnblogs.com/zhizhan/p/4412343.html 支持向量机SVM是从线性可分情况下的最优分类面提出的.所谓最优分类,就是要求分类线不但能够将两类无错误的分开,而且两类之间的分类间隔最大,前者是保证经验风险最小(为0),而通过后面的讨论我们看到,使分类间隔最大实际上就是使得推广性中的置信范围最小.推广到高维空间,最优分类线就成为最优分类面. 支持向量机是利用分类间隔的思想进行训练…
机器学习中的范数规则化之(二)核范数与规则项参数选择 zouxy09@qq.com http://blog.csdn.net/zouxy09 上一篇博文,我们聊到了L0,L1和L2范数,这篇我们絮叨絮叨下核范数和规则项参数选择.知识有限,以下都是我一些浅显的看法,如果理解存在错误,希望大家不吝指正.谢谢. 三.核范数 核范数||W||*是指矩阵奇异值的和,英文称呼叫Nuclear Norm.这个相对于上面火热的L1和L2来说,可能大家就会陌生点.那它是干嘛用的呢?霸气登场:约束Low-Rank(…
先看下ababoost和决策树效果对比 import numpy as np import matplotlib.pyplot as plt from sklearn.model_selection import learning_curve def plot_learning_curve(estimator,title,X,y,ylim=None,cv=None, n_jobs=None,train_sizes=np.linspace(.1,1.0,10)): plt.figure() plt…
上一回有个读者问我:回归模型与分类模型的区别在哪?有什么不同,我在这里给他回答一下 : : : : 回归问题通常是用来预测一个值,如预测房价.未来的天气情况等等,例如一个产品的实际价格为500元,通过回归分析预测值为499元,我们认为这是一个比较好的回归分析.   分类问题是用于将事物打上一个标签.分类有多个特征,一个标签  .例如判断一幅图片上的动物是一只猫还是一只狗,分类通常是建立在回归之上,分类的最后一层通常要使用softmax函数进行判断其所属类别.分类并没有逼近的概念,最终正确结果只有…
http://blog.csdn.net/zouxy09/article/details/24971995 机器学习中的范数规则化之(一)L0.L1与L2范数 zouxy09@qq.com http://blog.csdn.net/zouxy09 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化.我们先简单的来理解下常用的L0.L1.L2和核范数规则化.最后聊下规则化项参数的选择问题.这里因为篇幅比较庞大,为了不吓到大家,我将这个五个部分分成两篇博文.知识有限,以下都是我一些浅显的看法…