Hadoop基础-Hdfs各个组件的运行原理介绍 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.NameNode工作原理(默认端口号:50070) 1>.什么是NameNode NameNode管理文件系统的命名空间.它维护着文件系统树及整棵树内所有的文件和目录.这些信息以两个文件形式永久保存在本地磁盘上:命名空间镜像文件和编辑日志文件.NameNode也记录着每个文件中各个块所在的数据节点信息,但它并不永久保存块的位置信息,因为这些信息在系统启动时由数据节点重建. 2>…
这是我收集的两本关于Hadoop的书,高清PDF版,在此和大家分享: 1.<Hadoop技术内幕:深入理解MapReduce架构设计与实现原理>董西成 著  机械工业出版社2013年5月出版 2.<Hadoop技术内幕:深入解析Hadoop Common和HDFS架构设计与实现原理>蔡斌.陈湘萍 著  机械工业出版社2013年4月出版 百度网盘下载地址: http://pan.baidu.com/s/1sjNmkFj…
一 MapReduce入门 1.1 MapReduce定义 Mapreduce是一个分布式运算程序的编程框架,是用户开发“基于hadoop的数据分析应用”的核心框架: Mapreduce核心功能是将用户编写的业务逻辑代码和自带默认组件整合成一个完整的分布式运算程序,并发运行在一个hadoop集群上. 1.2 MapReduce优缺点 1.2.1 优点 1)MapReduce 易于编程.它简单的实现一些接口,就可以完成一个分布式程序,这个分布式程序可以分布到大量廉价的 PC 机器运行.也就是说你写…
本文源码:GitHub·点这里 || GitEE·点这里 一.Yarn基本结构 Hadoop三大核心组件:分布式文件系统HDFS.分布式计算框架MapReduce,分布式集群资源调度框架Yarn.Yarn并不是在Hadoop初期就有的,是在Hadoop升级发展才诞生的,典型的Master-Slave架构. Yarn包括两个主要进程:资源管理器Resource-Manager,节点管理器Node-Manager. 资源管理器 通常部署在独立的服务器,处理客户端请求: 处理集群中的资源分配和调度管理…
本编随笔是小编个人参照个人的笔记.官方文档以及网上的资料等后对HDFS的概念以及运行原理进行系统性地归纳,说起来真的惭愧呀,自学了很长一段时间也没有对Hadoop知识点进行归纳,有时候在实战中或者与别人交流Hadoop相关技术时,很多概念也只是模模糊糊记得,并非很熟练.哈哈哈,趁着最后一个暑假,把自己这两年自学的大数据开发技术都系统性归纳,免得以后自己忘记了,顺便分享到自己的博客上,也给初学者等有需要的人参考. 写博客不易,如果文章有错误,请指出,觉得不错的话,请给个赞哈,谢谢~ 1.HDFS的…
微信公众号[程序员江湖] 作者黄小斜,斜杠青年,某985硕士,阿里 Java 研发工程师,于 2018 年秋招拿到 BAT 头条.网易.滴滴等 8 个大厂 offer,目前致力于分享这几年的学习经验.求职心得和成长感悟,以及作为程序员的思考和见解.(关注公众号后回复”资料“即可领取 3T 免费技术学习资源) ​       纯干货:Hadoop核心架构HDFS+MapReduce+Hbase+Hive内部机理详解. 通过这一阶段的调研总结,从内部机理的角度详细分析,HDFS.MapReduce.…
转自:http://blog.csdn.net/iamdll/article/details/20998035 分类: 分布式 2014-03-11 10:31 156人阅读 评论(0) 收藏 举报 目录(?)[+] Hadoop核心架构HDFS+MapReduce+Hbase+Hive内部机理详解 通过对Hadoop分布式计算平台最核心的分布式文件系统HDFS.MapReduce处理过程,以及数据仓库工具Hive和分布式数据库Hbase的介绍,基本涵盖了Hadoop分布式平台的所有技术核心.…
HDFS的体系架构 整个Hadoop的体系结构主要是通过HDFS来实现对分布式存储的底层支持,并通过MR来实现对分布式并行任务处理的程序支持. HDFS采用主从(Master/Slave)结构模型,一个HDFS集群是由一个NameNode和若干个DataNode组成的(在最新的Hadoop2.2版本已经实现多个NameNode的配置-这也是一些大公司通过修改hadoop源代码实现的功能,在最新的版本中就已经实现了).NameNode作为主服务器,管理文件系统命名空间和客户端对文件的访问操作.Da…
前言 其实说到HDFS的存储原理,无非就是读操作和写操作,那接下来我们详细的看一下HDFS是怎么实现读写操作的! 一.HDFS读取过程 1)客户端通过调用FileSystem对象的open()来读取希望打开的文件.对于HDFS来说,这个对象是分布式文件系统的一个实例. 2)DistributedFileSystem通过RPC来调用namenode,以确定文件的开头部分的块位置.对于每一块,namenode返回具有该块副本的datanode地址. 此外,这些datanode根据他们与client的…
Hadoop分布式文件系统(HDFS)是一种被设计成适合运行在通用硬件上的分布式文件系统.HDFS是一个高度容错性的系统,适合部署在廉价的机器上.它能提供高吞吐量的数据访问,非常适合大规模数据集上的应用.要理解HDFS的内部工作原理,首先要理解什么是分布式文件系统. 1 .分布式文件系统 多台计算机联网协同工作(有时也称为一个集群)就像单台系统一样解决某种问题,这样的系统我们称之为分布式系统. 分布式文件系统是分布式系统的一个子集,它们解决的问题就是数据存储. 换句话说,它们是横跨在多台计算机上…
转载请注明来自36大数据(36dsj.com):36大数据 » Hadoop分布式文件系统HDFS的工作原理详述 转注:读了这篇文章以后,觉得内容比较易懂,所以分享过来支持一下. Hadoop分布式文件系统(HDFS)是一种被设计成适合运行在通用硬件上的分布式文件系统.HDFS是一个高度容错性的系统,适合部署在廉价的 机器上.它能提供高吞吐量的数据访问,非常适合大规模数据集上的应用.要理解HDFS的内部工作原理,首先要理解什么是分布式文件系统. 1.分布式文件系统 多台计算机联网协同工作(有时也…
作业要求来源:https://edu.cnblogs.com/campus/gzcc/GZCC-16SE2/homework/3319 1.用自己的话阐明Hadoop平台上HDFS和MapReduce的功能.工作原理和工作过程. HDFS常用功能 1.元数据 2.检查点 3.DataNode功能 HDFS工作原理 1 分布式文件系统,它所管理的文件是被切块存储在若干台datanode服务器上.2 hdfs提供了一个统一的目录树来定位hdfs中的文件,客户端访问文件时只要指定目录树的路径即可,不用…
一. HDFS介绍: Hadoop2介绍 HDFS概述 HDFS读写流程   1.  Hadoop2介绍 Hadoop是Apache软件基金会旗下的一个分布式系统基础架构.Hadoop2的框架最核心的设计就是HDFS.MapReduce和YARN,为海量的数据提供了存储和计算. HDFS主要是Hadoop的存储,用于海量数据的存储: MapReduce主要运用于分布式计算: YARN是Hadoop2中的资源管理系统. Hadoop1和Hadoop2的结构对比: Hadoop2主要改进: YARN…
直接贴面试题: 怎么保证数据 kafka 里的数据安全? 答: 生产者数据的不丢失kafka 的 ack 机制: 在 kafka 发送数据的时候,每次发送消息都会有一个确认反馈机制,确保消息正常的能够被收到. 如果是同步模式:ack 机制能够保证数据的不丢失,如果 ack 设置为 0,风险很大,一般不建议设置为 0 如果是异步模式:通过 buffer 来进行控制数据的发送,有两个值来进行控制,时间阈值与消息的数量阈值,如果 buffer 满了数据还没有发送出去,如果设置的是立即清理模式,风险很大…
InnoDB 存储引擎作为我们最常用到的存储引擎之一,充分熟悉它的的实现和运行原理,有助于我们更好地创建和维护数据库表. InnoDB 体系架构 InnoDB 主要包括了: 内存池.后台线程以及存储文件. 内存池又是由多个内存块组成的,主要包括缓存磁盘数据.redo log 缓冲等: 后台线程则包括了 : Master Thread.IO Thread 以及 Purge Thread 等: 由 InnoDB 存储引擎实现的表的存储结构文件一般包括表结构文件(.frm).共享表空间文件(ibdat…
HDFS是Hadoop Distribute File System 的简称,也就是Hadoop的一个分布式文件系统. 一.HDFS的优缺点 1.HDFS优点: a.高容错性 .数据保存多个副本 .数据丢的失后自动恢复 b.适合批处理 .移动计算而非移动数据 .数据位置暴露给计算框架 c.适合大数据处理 .GB.TB.甚至PB级的数据处理 .百万规模以上的文件数据 .10000+的节点 d.可构建在廉价的机器上 .通过多副本存储,提高可靠性 .提供了容错和恢复机制 2.HDFS缺点 a.低延迟数…
HDFS是Hadoop Distribute File System 的简称,也就是Hadoop的一个分布式文件系统. 一.HDFS的优缺点 1.HDFS优点: a.高容错性 .数据保存多个副本 .数据丢的失后自动恢复 b.适合批处理 .移动计算而非移动数据 .数据位置暴露给计算框架 c.适合大数据处理 .GB.TB.甚至PB级的数据处理 .百万规模以上的文件数据 .10000+的节点 d.可构建在廉价的机器上 .通过多副本存储,提高可靠性 .提供了容错和恢复机制 2.HDFS缺点 a.低延迟数…
当数据集超过一个单独的物理计算机的存储能力时,便有必要将它分不到多个独立的计算机上.管理着跨计算机网络存储的文件系统称为分布式文件系统.Hadoop 的分布式文件系统称为 HDFS,它 是为 以流式数据访问模式存储超大文件而设计的文件系统. “超大文件”是指几百 TB 大小甚至 PB 级的数据: 流式数据访问:HDFS 建立在这样一个思想上 - 一次写入.多次读取的模式是最高效的.一个数据集通常由数据源生成或者复制,接着在此基础上进行各种各样的分析.HDFS 是为了达到高数据吞吐量而优化的,这有…
Hadoop是什么,为什么要学习Hadoop?     Hadoop是一个分布式系统基础架构,由Apache基金会开发.用户可以在不了解分布式底层细节的情况下,开发分布式程序.充分利用集群的威力高速运算和存储.Hadoop实现了一个分布式文件系统(Hadoop Distributed File System),简称HDFS.HDFS有着高容错性的特点,并且设计用来部署在低廉的(low-cost)硬件上.而且它提供高传输率(high throughput)来访问应用程序的数据,适合那些有着超大数据…
在大数据领域,只有深挖数据科学领域,走在学术前沿,才能在底层算法和模型方面走在前面,从而占据领先地位. Spark的这种学术基因,使得它从一开始就在大数据领域建立了一定优势.无论是性能,还是方案的统一性,对比传统的Hadoop,优势都非常明显.Spark提供的基于RDD的一体化解决方案,将MapReduce.Streaming.SQL.Machine Learning.Graph Processing等模型统一到一个平台下,并以一致的API公开,并提供相同的部署方案,使得Spark的工程应用领域…
两篇讲的不错文章 http://www.cnblogs.com/nexiyi/p/hbase_shell.html http://blog.csdn.net/u010967382/article/details/37878701?utm_source=tuicool&utm_medium=referral hbase操做 hbase web操作 hbase shell 基本操作 1建表 具体命令 2建表后查看表describe 3清空表truncate lmj_test 4删除表 5修改表结构先…
1 Flink的前世今生(生态很重要) 原文:https://blog.csdn.net/shenshouniu/article/details/84439459 很多人可能都是在 2015 年才听到 Flink 这个词,其实早在 2008 年,Flink 的前身已经是柏林理工大学一个研究性项目, 在 2014 被 Apache 孵化器所接受,然后迅速地成为了 ASF(Apache Software Foundation)的顶级项目之一. Apache Flink is an open sour…
Hadoop集群-HDFS集群中大数据运维常用的命令总结 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 本篇博客会简单涉及到滚动编辑,融合镜像文件,目录的空间配额等运维操作简介.话不多少,直接上命令便于以后查看.   一.查看hadf的帮助信息 [yinzhengjie@s101 ~]$ hdfs Usage: hdfs [--config confdir] [--loglevel loglevel] COMMAND where COMMAND is one of: dfs…
1.用自己的话阐明Hadoop平台上HDFS和MapReduce的功能.工作原理和工作过程. HDFS (1)第一次启动 namenode 格式化后,创建 fsimage 和 edits 文件.如果不是第一次启动,直接加载编辑日志和镜像文件到内存.(2)客户端对元数据进行增删改的请求.(3)namenode 记录操作日志,更新滚动日志.(4)namenode 在内存中对数据进行增删改查. 2)第二阶段:Secondary NameNode 工作(1)Secondary NameNode 询问 n…
海量数据处理 分而治之 核心思想: 把数据分发到多个节点 移动计算到数据附近 计算节点进行本地数据处理 优选顺序,次之随机读 一.HDFS概述 修改,先删除,再重新生成 1.架构 namenode维护着HDFS中存储的文件的元数据,以及每个文件块的列表,以及块所在datanode的信息.namenode会把元数据信息加载到内存中,管理副本数,默认副本是三个副本,每个block复制到多个datanode上存储. 通常启动两个namenode,active和standby. Datanode真正数据…
ASP.NET Core 运行原理剖析1:初始化WebApp模版并运行 核心框架 ASP.NET Core APP 创建与运行 总结 之前两篇文章简析.NET Core 以及与 .NET Framework的关系和.NET Core的构成体系从总体上介绍.NET Core,接下来计划用一个系列对ASP.NET Core的运行原理进行剖析. ASP.NET Core 是新一代的 ASP.NET,早期称为 ASP.NET vNext,并且在推出初期命名为ASP.NET 5,但随着 .NET Core…
HDFS Architecture HDFS Architecture(HDFS 架构) Introduction(简介) Assumptions and Goals(假设和目标) Hardware Failure(硬件失效是常态) Streaming Data Access(支持流式访问) Large Data Sets(大数据集) Simple Coherency Model(简单一致性模型) "Moving Computation is Cheaper than Moving Data&q…
Hadoop 2.x HDFS新特性 1.HDFS联邦    2. HDFS HA(要用到zookeeper等,留在后面再讲)    3.HDFS快照 回顾: HDFS两层模型     Namespace: 包括目录.文件和块.它支持所有命名空间相关的文件操作,如创建.删除.修改,查看所有文件和目录.     Block Storage Service(块存储服务) 包括两部分: 1 在namenode中的块的管理:提供datanode集群的注册.心跳检测等功能.处理块的报告信息和维护块的位置信…
参考 http://www.cnblogs.com/shishanyuan/p/4721326.html 1. Spark运行架构 1.1 术语定义 lApplication:Spark Application的概念和Hadoop MapReduce中的类似,指的是用户编写的Spark应用程序,包含了一个Driver 功能的代码和分布在集群中多个节点上运行的Executor代码: lDriver:Spark中的Driver即运行上述Application的main()函数并且创建SparkCon…
1. 背景   Block Replica Placement——数据块复本存储策略,HDFS Namenode以此为依据选取数据块复本应存储至哪些HDFS Datanodes,策略的设计需要权衡以下三个因素:   可靠性 写带宽 读带宽   注:本文均以数据块复本因子为3来讨论.   我们以两个比较极端的例子来说明上述三个因素之间的关系.   (1)数据块的三个复本集中存储至一台HDFS Datanode:   如果Client(数据写入客户端)与Datanode不是同一台机器,如下图:  …