在使用PCA和NFC中有三个函数fit,fit_transform,transform区分不清各自的功能.通过测试,勉强了解各自的不同,在这里做一些笔记. 1.fit_transform是fit和transform的混合,相当于先调用fit再调用transform. 2.transform函数必须在fit函数之后调用否则会报错 3.fit_transform返回的是降维之后的结果,而且是对列压缩的 4.fit函数返回的是算法类,但是其成员变量components_是有数据的,而且似乎也是执行算法…
敲<Python机器学习及实践>上的code的时候,对于数据预处理中涉及到的fit_transform()函数和transform()函数之间的区别很模糊,查阅了很多资料,这里整理一下: # 从sklearn.preprocessing导入StandardScaler from sklearn.preprocessing import StandardScaler # 标准化数据,保证每个维度的特征数据方差为1,均值为0,使得预测结果不会被某些维度过大的特征值而主导 ss = Standard…
第十三次作业——回归模型与房价预测 1. 导入boston房价数据集 2. 一元线性回归模型,建立一个变量与房价之间的预测模型,并图形化显示. 3. 多元线性回归模型,建立13个变量与房价之间的预测模型,并检测模型好坏,并图形化显示检查结果. 4.  一元多项式回归模型,建立一个变量与房价之间的预测模型,并图形化显示. 代码: #导入boston房价数据集 from sklearn.datasets import load_boston import pandas as pd boston =…
1 概述 1.1 决策树是如何工作的 1.2 构建决策树 1.2.1 ID3算法构建决策树 1.2.2 简单实例 1.2.3 ID3的局限性 1.3 C4.5算法 & CART算法 1.3.1 修改局部最优化条件 1.3.2 连续变量处理手段 1.4 sklearn中的决策树 2 DecisionTreeClassifier与红酒数据集 2.1 重要参数 2.1.1 criterion 2.1.2 random_state & splitter 2.1.3 剪枝参数 2.1.4 目标权重参…
一.简介 在现实的机器学习任务中,自变量往往数量众多,且类型可能由连续型(continuou)和离散型(discrete)混杂组成,因此出于节约计算成本.精简模型.增强模型的泛化性能等角度考虑,我们常常需要对原始变量进行一系列的预处理及筛选,剔除掉冗杂无用的成分,得到较为满意的训练集,才会继续我们的学习任务,这就是我们常说的特征选取(feature selection).本篇就将对常见的特征选择方法的思想及Python的实现进行介绍: 二.方法综述 2.1 去除方差较小的变量 这种方法针对离散型…
1. 标准化(Standardization or Mean Removal and Variance Scaling) 变换后各维特征有0均值,单位方差.也叫z-score规范化(零均值规范化).计算方式是将特征值减去均值,除以标准差. sklearn.preprocessing.scale(X) 一般会把train和test集放在一起做标准化,或者在train集上做标准化后,用同样的标准化器去标准化test集,此时可以用scaler scaler = sklearn.preprocessin…
小伙伴们大家好~o( ̄▽ ̄)ブ,沉寂了这么久我又出来啦,这次先不翻译优质的文章了,这次我们回到Python中的机器学习,看一下Sklearn中的数据预处理和特征工程,老规矩还是先强调一下我的开发环境是Jupyter lab,所用的库和版本大家参考: Python 3.7.1(你的版本至少要3.4以上) Scikit-learn 0.20.0 (你的版本至少要0.19) Numpy 1.15.3, Pandas 0.23.4, Matplotlib 3.0.1, SciPy 1.1.0 1 skl…
RESCALING attribute data to values to scale the range in [0, 1] or [−1, 1] is useful for the optimization algorithms, such as gradient descent, that are used within machine learning algorithms that weight inputs (e.g. regression and neural networks).…
重要接口inverse_transform  在上周的特征工程课中,我们学到了神奇的接口inverse_transform,可以将我们归一化,标准化,甚至做过哑变量的特征矩阵还原回原始数据中的特征矩阵,这几乎在向我们暗示,任何有inverse_transform这个接口的过程都是可逆的.PCA应该也是如此.在sklearn中,我们通过让原特征矩阵X右乘新特征空间矩阵V(k,n)来生成新特征矩阵X_dr,那理论上来说,让新特征矩阵X_dr右乘V(k,n)的逆矩阵 ,就可以将新特征矩阵X_dr还原为…
处理分类特征:编码与哑变量 在机器学习中,大多数算法,譬如逻辑回归,支持向量机SVM,k近邻算法等都只能够处理数值型数据,不能处理文字,在sklearn当中,除了专用来处理文字的算法,其他算法在fit的时候全部要求输入数组或矩阵,也不能够导入文字型数据(其实手写决策树和普斯贝叶斯可以处理文字,但是sklearn中规定必须导入数值型).然而在现实中,许多标签和特征在数据收集完毕的时候,都不是以数字来表现的.比如说,学历的取值可以是["小学",“初中”,“高中”,"大学"…