51NOD 1134 最长上升子序列】的更多相关文章

题目链接:51nod 1134 最长递增子序列 #include<cstdio> #include<cstring> #include<algorithm> using namespace std; ; int a[N]; int b[N]; int Search(int num, int low, int high){ int mid; while(low <= high){ mid = (low + high)/; ; ; } return low; } in…
1134 最长递增子序列 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 给出长度为N的数组,找出这个数组的最长递增子序列.(递增子序列是指,子序列的元素是递增的) 例如:5 1 6 8 2 4 5 10,最长递增子序列是1 2 4 5 10. Input 第1行:1个数N,N为序列的长度(2 <= N <= 50000) 第2 - N + 1行:每行1个数,对应序列的元素(-10^9 <= S[i] <= 10^9) Output 输…
给出长度为N的数组,找出这个数组的最长递增子序列.(递增子序列是指,子序列的元素是递增的) 例如:5 1 6 8 2 4 5 10,最长递增子序列是1 2 4 5 10.   Input 第1行:1个数N,N为序列的长度(2 <= N <= 50000) 第2 - N + 1行:每行1个数,对应序列的元素(-10^9 <= S[i] <= 10^9) Output 输出最长递增子序列的长度. Input示例 8 5 1 6 8 2 4 5 10 Output示例 5 #includ…
给出长度为N的数组,找出这个数组的最长递增子序列.(递增子序列是指,子序列的元素是递增的) 例如:5 1 6 8 2 4 5 10,最长递增子序列是1 2 4 5 10.   输入 第1行:1个数N,N为序列的长度(2 <= N <= 50000) 第2 - N + 1行:每行1个数,对应序列的元素(-10^9 <= S[i] <= 10^9) 输出 输出最长递增子序列的长度. 输入样例 8 5 1 6 8 2 4 5 10 输出样例 5解: #include<stdio.h…
给出长度为N的数组,找出这个数组的最长递增子序列.(递增子序列是指,子序列的元素是递增的) 例如:5 1 6 8 2 4 5 10,最长递增子序列是1 2 4 5 10. Input 第1行:1个数N,N为序列的长度(2 <= N <= 50000)  第2 - N + 1行:每行1个数,对应序列的元素(-10^9 <= Sii <= 10^9) Output 输出最长递增子序列的长度. Sample Input 8 5 1 6 8 2 4 5 10 Sample Output 5…
给出长度为N的数组,找出这个数组的最长递增子序列.(递增子序列是指,子序列的元素是递增的) 例如:5 1 6 8 2 4 5 10,最长递增子序列是1 2 4 5 10.   Input 第1行:1个数N,N为序列的长度(2 <= N <= 50000) 第2 - N + 1行:每行1个数,对应序列的元素(-10^9 <= S[i] <= 10^9) Output 输出最长递增子序列的长度. Input示例 8 5 1 6 8 2 4 5 10 Output示例 5 #includ…
#include <iostream> #include <algorithm> #include <stdio.h> #define MAXN 50010 using namespace std; const int MIN = -1e9; int main(void){ ; scanf("%d", &n); ; i<n; i++){ scanf("%d", &a[i]); } ; i <= n; i…
动态规划 修改隐藏话题 1134 最长递增子序列  基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 给出长度为N的数组,找出这个数组的最长递增子序列.(递增子序列是指,子序列的元素是递增的) 例如:5 1 6 8 2 4 5 10,最长递增子序列是1 2 4 5 10. Input 第1行:1个数N,N为序列的长度(2 <= N <= 50000) 第2 - N + 1行:每行1个数,对应序列的元素(-10^9 <= S[i] <= 1…
51nod 1376 最长递增子序列的数量 数组A包含N个整数(可能包含相同的值).设S为A的子序列且S中的元素是递增的,则S为A的递增子序列.如果S的长度是所有递增子序列中最长的,则称S为A的最长递增子序列(LIS).A的LIS可能有很多个.例如A为:{1 3 2 0 4},1 3 4,1 2 4均为A的LIS.给出数组A,求A的LIS有多少个.由于数量很大,输出Mod 1000000007的结果即可.相同的数字在不同的位置,算作不同的,例如 {1 1 2} 答案为2.   Input 第1行…
51nod 1376 最长上升子序列的数量 题解 我们设lis[i]为以位置i结尾的最长上升子序列长度,dp[i]为以位置i结尾的最长上升子序列数量. 显然,dp[i]要从前面的一些位置(设为位置j)的dp转移过来. j要满足下面的条件: j < i a[j] < a[i] lis[j] = lis[i] - 1 dp[i]即为所有满足上述条件的dp[j]之和. 如果我们正常从左到右处理序列,第一条显然可以直接满足(因为大于i的位置还都没处理过). 为了满足第三条,我们可以把lis相同的值放在…
51nod 1218 最长递增子序列 题面 给出一个序列,求哪些元素可能在某条最长上升子序列中,哪些元素一定在所有最长上升子序列中. 题解 YJY大嫂教导我们,如果以一个元素结尾的LIS长度 + 以它开头的LIS长度 - 1 = n,那么这个元素可能在LIS中. 那么什么时候它一定在呢?就是它在LIS中的位置"无可替代"的时候,即:设以它结尾的LIS长度为x,以任何其它元素(不可能在LIS中的元素除外)结尾的LIS长度均不为x. 然后就做出来了! #include <cstdio…
1134 最长递增子序列  基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 给出长度为N的数组,找出这个数组的最长递增子序列.(递增子序列是指,子序列的元素是递增的) 例如:5 1 6 8 2 4 5 10,最长递增子序列是1 2 4 5 10. Input 第1行:1个数N,N为序列的长度(2 <= N <= 50000) 第2 - N + 1行:每行1个数,对应序列的元素(-10^9 <= S[i] <= 10^9) Output…
原题链接:1134 最长递增子序列 题目分析:长度为  的数列  有多达  个子序列,但我们应用动态规划法仍可以很高效地求出最长递增子序列().这里介绍两种方法. 先考虑用下列变量设计动态规划的算法.这里设输入数列的第一个数为  . 一位数组, 为由  到  中的部分元素构成且最后选择了  的  的长度. 一位数组, 为由  到  中的部分元素构成且最后选择了  的  的倒数第二个元素的位置(记录当前以得出的最长递增子序列中,各元素前面一个元素的位置) 有了这些变量,动态规划法求  的算法便可以…
题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1376 1376 最长递增子序列的数量 基准时间限制:1 秒 空间限制:131072 KB 分值: 160 难度:6级算法题 收藏 关注 数组A包含N个整数(可能包含相同的值).设S为A的子序列且S中的元素是递增的,则S为A的递增子序列.如果S的长度是所有递增子序列中最长的,则称S为A的最长递增子序列(LIS).A的LIS可能有很多个.例如A为:{1 3 2 0…
传送门 Description 给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的).   比如两个串为:   abcicba abdkscab   ab是两个串的子序列,abc也是,abca也是,其中abca是这两个字符串最长的子序列. Input 第1行:字符串A 第2行:字符串B (A,B的长度 <= 1000) Output 输出最长的子序列,如果有多个,随意输出1个. Sample Input abcicba abdkscab Sample Output abca 思…
1376 最长递增子序列的数量 首先可以用线段树优化$DP$做,转移时取$0...a[i]$的最大$f$值 但我要练习$CDQ$ $LIS$是二维偏序问题,偏序关系是$i<j,\ a_i<a_j$ $CDQ$分治可以解决偏序问题 $CDQ(l,r)\ :$ $CDQ(l,mid)$ $[l,r]$按$a$排序,$[l,mid] \rightarrow\ [mid+1,r]$ $CDQ(mid+1,r)$ 这个排序没法用归并排序,因为你要用最优的$f[k],k\in [mid+1,r]$来更新$…
给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的).   比如两个串为:   abcicba abdkscab   ab是两个串的子序列,abc也是,abca也是,其中abca是这两个字符串最长的子序列. Input 第1行:字符串A 第2行:字符串B (A,B的长度 <= 1000) Output 输出最长的子序列,如果有多个,随意输出1个. Sample Input abcicba abdkscab Sample Output abca 求最长公共子序列是dp的思想,先分…
[算法]动态规划 [题解]经典模型:最长上升子序列(n log n) #include<cstdio> #include<algorithm> #include<cstring> using namespace std; ; int a[maxn],b[maxn],f[maxn],n,m; int find(int x) { ,r=m+;//m+1是永远不可能被直接比较的,但是必须有 while(l<r) { ; ; else r=mid; } return l;…
1006 最长公共子序列Lcs  基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的).   比如两个串为:   abcicba abdkscab   ab是两个串的子序列,abc也是,abca也是,其中abca是这两个字符串最长的子序列. Input 第1行:字符串A 第2行:字符串B (A,B的长度 <= 1000) Output 输出最长的子序列,如果有多个,随意输出1个. In…
1006 给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). 比如两个串为:   abcicba abdkscab   ab是两个串的子序列,abc也是,abca也是,其中abca是这两个字符串最长的子序列.   输入 第1行:字符串A 第2行:字符串B (A,B的长度 <= 1000) 输出 输出最长的子序列,如果有多个,随意输出1个. 输入样例 abcicba abdkscab 输出样例 abca 解:dp题,画一画表格可以帮助理解. #include<stdio.h…
题意: 最长递增子序列 思路: 普通的$O(n^2)$的会超时.. 然后在网上找到了另一种不是dp的写法,膜拜一下,自己写了一下解释 来自:https://blog.csdn.net/Adusts/article/details/80764782 代码: #include<stdio.h> #include<vector> #include<algorithm> using namespace std; int main() { int n = 0, buf = 0,…
传送门 Description 数组A包含N个整数.设S为A的子序列且S中的元素是递增的,则S为A的递增子序列.如果S的长度是所有递增子序列中最长的,则称S为A的最长递增子序列(LIS).A的LIS可能有很多个.例如A为:1 3 2 0 4,1 3 4,1 2 4均为A的LIS.其中元素1和4一定会出现在LIS当中,元素2和3可能会出现在LIS当中,元素0一定不会出现在LIS当中.给出数组A,输出哪些数可能出现在LIS中,哪些数一定出现在LIS中.输出数字对应的下标,下标编号从1开始,编号为1…
给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). 比如两个串为:   abcicba abdkscab   ab是两个串的子序列,abc也是,abca也是,其中abca是这两个字符串最长的子序列. Input 第1行:字符串A 第2行:字符串B (A,B的长度 <= 1000) Output 输出最长的子序列,如果有多个,随意输出1个. Input示例 abcicba abdkscab Output示例 abca #include <iostream> #incl…
给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). 比如两个串为: abcicba abdkscab ab是两个串的子序列,abc也是,abca也是,其中abca是这两个字符串最长的子序列. 收起 输入 第1行:字符串A 第2行:字符串B (A,B的长度 <= 1000) 输出 输出最长的子序列,如果有多个,随意输出1个. 输入样例 abcicba abdkscab 输出样例 abca 思路就是先求最长公共子序列,然后再根据路径逆推,找到匹配点. #include<ios…
题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1218 题解:先要确定这些点是不是属于最长递增序列然后再确定这些数在最长递增序列中出现的次数,如果大于1次显然是可能出现只出现1次肯定是必然出现.那么就是怎么判断是不是属于最长递增序列,这个只要顺着求一下最长递增标一下该点属于长度几然后再逆着求一下最长递减标一下该点属于长度几如果两个下标之和等于最长长度+1那么该点就属于最长递增序列,然后就是求1-len(le…
题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1376 题解:显然这题暴力的方法很容易想到就是以每个数为结尾最长的有多少个,但是这样显然会超时所以要想一个方法去优化,要么用stl要么就是数据结构 线段树是个可以考虑的对象因为这也是求区间的和于是稍微将原数组优化一下,按照大小排序一下然后再按照下标更新这样能确保有序.具体看一下代码 还有一点要提一下有时候要考虑两维的东西可以适当排一下序使其变成一维有序这样就方…
思路: 由于一般的动态规划时间复杂度是O(n^2)(哈哈哈哈 第一次用的就是这个!)用在这里由于n最大为50000 所以会超时 到这里我们可以用一个数组来动态维护这个最长上升的子序列,将你要输入的子序列一个一个按升序存入数组 如果发现当前要存入的数字x比数组最后一个还要大 那么直接存入数组,否则就将数组中按升序第一个大于x的数 用x替换掉(这里的替换我们可以用二分搜索来进行) 由于二分搜索的时间复杂度是log(n) 所以总的时间复杂度为O(n log(n) ): 下面举个例子 例如 -6 4 -…
题意:略. 析:dp[i] 表示以第 i 个数结尾的LIS的长度和数量,状态方程很好转移,先说长度 dp[i] = max { dp[j] + 1 | a[i] > a[j] && j < i },然后是数量,dp[i] = sigma(dp[j]) if dp[i] == dp[j] + 1. 如果普通转移时间复杂度很高,达不到要求,由于有个求和的操作,可以考虑用BIT优化,先把每个数离散化,然后对每个数只要求小于它的数,并且长度最长的就好了,数量也是,如果长度一样就进行合并…
题目:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1218 自己怎么连这种 喜闻乐见的大水题 都做不出来了…… 好像见过的套路,就是求每个位置到它为止的LIS和从它开始的LIS,最后拼起来是ans+1的就在LIS上. 然后试图通过方案数来判断经过该位置的LIS有多少,以判断该位置是不是唯一的. WA了一次后发现自己的树状数组传参没有-1,求成非严格的了. 还是WA了后面的点.给方案数开了long long后多A了几个…
如何判断一个元素是否一定在LIS中?设f[i]为以ai结尾的LIS长度,g[i]为以ai开头的LIS长度,若f[i]+g[i]-1==总LIS,那么i就一定在LIS中出现 显然只出现一次的元素一定是必选,剩下的就是可选了. #include<algorithm> #include<iostream> #include<cstring> #include<cstdio> #include<vector> using namespace std; ;…