Spark 二项逻辑回归__二分类】的更多相关文章

package Spark_MLlib import org.apache.spark.ml.Pipeline import org.apache.spark.ml.classification.{BinaryLogisticRegressionSummary, LogisticRegression, LogisticRegressionModel} import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator i…
package Spark_MLlib import org.apache.spark.ml.Pipeline import org.apache.spark.ml.classification.{LogisticRegression, LogisticRegressionModel} import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator import org.apache.spark.ml.feature…
package Spark_MLlib import org.apache.spark.ml.Pipeline import org.apache.spark.ml.classification.{BinaryLogisticRegressionSummary, LogisticRegression, LogisticRegressionModel} import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator i…
本文简单整理了以下内容: (一)线性回归 (二)二分类:二项Logistic回归 (三)多分类:Softmax回归 (四)广义线性模型 闲话:二项Logistic回归是我去年入门机器学习时学的第一个模型(忘记了为什么看完<统计学习方法>第一章之后直接就跳去了第六章,好像是对"逻辑斯蒂"这个名字很感兴趣?...),对照<机器学习实战>写了几行代码敲了一个toy版本,当时觉得还是挺有意思的.我觉得这个模型很适合用来入门(但是必须注意这个模型有很多很多很多很多可以展开…
在<机器学习---逻辑回归(一)(Machine Learning Logistic Regression I)>一文中,我们讨论了如何用逻辑回归解决二分类问题以及逻辑回归算法的本质.现在来看一下多分类的情况. 现实中相对于二分类问题,我们更常遇到的是多分类问题.多分类问题如何求解呢?有两种方式.一种是方式是修改原有模型,另一种方式是将多分类问题拆分成一个个二分类问题解决. 先来看一下第一种方式:修改原有模型.即:把二分类逻辑回归模型变为多分类逻辑回归模型. (二分类逻辑回归称为binary…
(整理自AndrewNG的课件,转载请注明.整理者:华科小涛@http://www.cnblogs.com/hust-ghtao/) 上一篇讲解了Logistic Regression的基础知识,感觉有很多知识没说清楚,自己理解的也不透彻,好在coursera上NG又从另外的角度讲了一下.这里我权当个搬运工,把他讲的搬过来,加上自己的理解整理一下.主要分成三个部分:对的再理解.Decision Boundary(决策边界).多类问题. 1 对的再理解 这部分采用启发式的方式来讲解,循序渐进的在跟…
本作业使用逻辑回归(logistic regression)和神经网络(neural networks)识别手写的阿拉伯数字(0-9) 关于逻辑回归的一个编程练习,可参考:http://www.cnblogs.com/hapjin/p/6078530.html 下面使用逻辑回归实现多分类问题:识别手写的阿拉伯数字(0-9),使用神经网络实现:识别手写的阿拉伯数字(0-9),请参考:神经网络实现 数据加载到Matlab中的格式如下: 一共有5000个训练样本,每个训练样本是400维的列向量(20X…
数据来自UCI机器学习仓库中的垃圾信息数据集 数据可从http://archive.ics.uci.edu/ml/datasets/sms+spam+collection下载 转成csv载入数据 import matplotlib matplotlib.rcParams['font.sans-serif']=[u'simHei'] matplotlib.rcParams['axes.unicode_minus']=False import pandas as pd import numpy as…
题目太长啦!文档下载[传送门] 第1题 简述:实现逻辑回归. 此处使用了minimize函数代替Matlab的fminunc函数,参考了该博客[传送门]. import numpy as np import matplotlib.pyplot as plt import scipy.optimize as op #S函数 def sigmoid(z): g = 1/(1+np.exp(-z)) return g #cost计算函数 def costFunction(theta, X, y): t…
题目太长啦!文档下载[传送门] 第1题 简述:实现逻辑回归. 第1步:加载数据文件: data = load('ex2data1.txt'); X = data(:, [1, 2]); y = data(:, 3); plotData(X, y); % Put some labels hold on; % Labels and Legend xlabel('Exam 1 score') ylabel('Exam 2 score') % Specified in plot order legend…
在之前的问题讨论中,研究的都是连续值,即y的输出是一个连续的值.但是在分类问题中,要预测的值是离散的值,就是预测的结果是否属于某一个类.例如:判断一封电子邮件是否是垃圾邮件:判断一次金融交易是否是欺诈:之前我们也谈到了肿瘤分类问题的例子,区别一个肿瘤是恶性的还是良性的. 我们先说二分类问题,我们将一些自变量分为负向类和正向类,那么因变量为0,1:0表示负向类,1表示正向类. 如果用线性回归来讨论分类问题,那么假设输出的结果会大于1,但是我们的假设函数的输出应该是在0,1之间.所以我们把输出结果在…
ps:本博客内容根据唐宇迪的的机器学习经典算法  学习视频复制总结而来 http://www.abcplus.com.cn/course/83/tasks 逻辑回归 问题描述:我们将建立一个逻辑回归模型来预测一个学生是否被大学录取.假设你是一个大学系的管理员,你想根据两次考试的结果来决定每个申请人的录取机会.你有以前的申请人的历史数据,你可以用它作为逻辑回归的训练集.对于每一个培训例子,你有两个考试的申请人的分数和录取决定.为了做到这一点,我们将建立一个分类模型,根据考试成绩估计入学概率. 数据…
转自http://ufldl.stanford.edu/wiki/index.php/Softmax%E5%9B%9E%E5%BD%92 简介 在本节中,我们介绍Softmax回归模型,该模型是logistic回归模型在多分类问题上的推广,在多分类问题中,类标签  可以取两个以上的值. Softmax回归模型对于诸如MNIST手写数字分类等问题是很有用的,该问题的目的是辨识10个不同的单个数字.Softmax回归是有监督的,不过后面也会介绍它与深度学习/无监督学习方法的结合.(译者注: MNIS…
1. Logistic 分布和对率回归 监督学习的模型可以是概率模型或非概率模型,由条件概率分布\(P(Y|\bm{X})\)或决 策函数(decision function)\(Y=f(\bm{X})\)表示,随具体学习方法而定.对具体的输入\(\bm{x}\)进行相应的输出预测并得到某个结果时,写作\(P(y|\bm{x})\)或\(y=f(\bm{x})\). 我们这里的 Logistic 分类模型是概率模型,模型\(P(Y|\bm{X})\)表示给定随机向量\(\bm{X}\)下,分类标…
前情提要: 通俗地说逻辑回归[Logistic regression]算法(一) 逻辑回归模型原理介绍 上一篇主要介绍了逻辑回归中,相对理论化的知识,这次主要是对上篇做一点点补充,以及介绍sklearn 逻辑回归模型的参数,以及具体的实战代码. 1.逻辑回归的二分类和多分类 上次介绍的逻辑回归的内容,基本都是基于二分类的.那么有没有办法让逻辑回归实现多分类呢?那肯定是有的,还不止一种. 实际上二元逻辑回归的模型和损失函数很容易推广到多元逻辑回归.比如总是认为某种类型为正值,其余为0值. 举个例子…
Andrew Ng机器学习课程笔记(二)之逻辑回归 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7364636.html 前言 学习了Andrew Ng课程,开始写了一些笔记,现在写完第5章了,先把这5章的内容放在博客中,后面的内容会陆续更新! 这篇博客主要记录了Andrew Ng课程第二章逻辑回归,主要介绍了梯度下降法,逻辑回归的损失函数,多类别分类等等 简要介绍:逻辑回归算法是分类算法,我们将它作为分类算法使用.有时候…
原创文章,转载请注明: 转载自http://www.cnblogs.com/tovin/p/3816289.html 本文以spark 1.0.0版本MLlib算法为准进行分析 一.代码结构 逻辑回归代码主要包含三个部分 1.classfication:逻辑回归分类器 2.optimization:优化方法,包含了随机梯度.LBFGS两种算法 3.evaluation:算法效果评估计算…
                                                    大白话5分钟带你走进人工智能-第二十节逻辑回归和Softmax多分类问题(5) 上一节中,我们讲解了逻辑回归的优化,本节的话我们讲解逻辑回归做多分类问题以及传统的多分类问题,我们用什么手段解决. 先看一个场景,假如我们现在的数据集有3个类别,我们想通过逻辑回归建模给它区分出来.但我们知道逻辑回归本质上是区分二分类的算法模型.难道没有解决办法了吗?办法还是有的,既然想分出3类,我们姑且称这3个类…
sklearn实现多分类逻辑回归 #二分类逻辑回归算法改造适用于多分类问题1.对于逻辑回归算法主要是用回归的算法解决分类的问题,它只能解决二分类的问题,不过经过一定的改造便可以进行多分类问题,主要的改造方式有两大类:(1)OVR/A(One VS Rest/ALL)(2)OVO(One VS One) 2.对于OVR的改造方式,主要是指将多个分类结果(假设为n)分成是其中一种分类结果的和(其他),这样便可以有n种分类的模型进行训练,最终选择得分最高的的(预测率最高的的)便为分类结果即可.它所训练…
逻辑回归:问题只有两项,即{0, 1}.一般而言,回归问题是连续模型,不用在分类问题上,且噪声较大,但如果非要引入,那么采用逻辑回归模型. 对于一般训练集: 参数系统为: 逻辑回归模型为:      (sigmoid函数)      参数求解 对于逻辑回归用来分类{0, 1}问题,假设满足伯努利模型: 可以将上式写为一般形式为: 为了得到参数θ,求最大似然估计[2],可以得到: 为了简化问题,采用ln函数,即对数似然,可以得到: 这里为了最大似然估计使参数最大化,有两种方法求解: 采用梯度上升的…
from : http://blog.csdn.net/lsldd/article/details/41551797 在本系列文章中提到过用Python开始机器学习(3:数据拟合与广义线性回归)中提到过回归算法来进行数值预测.逻辑回归算法本质还是回归,只是其引入了逻辑函数来帮助其分类.实践发现,逻辑回归在文本分类领域表现的也很优秀.现在让我们来一探究竟. 1.逻辑函数 假设数据集有n个独立的特征,x1到xn为样本的n个特征.常规的回归算法的目标是拟合出一个多项式函数,使得预测值与真实值的误差最小…
概要 本章介绍二项堆,它和之前所讲的堆(二叉堆.左倾堆.斜堆)一样,也是用于实现优先队列的.和以往一样,本文会先对二项堆的理论知识进行简单介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现:实现的语言虽不同,但是原理一样,选择其中之一进行了解即可.若文章有错误或不足的地方,请不吝指出! 目录1. 二项树的介绍2. 二项堆的介绍3. 二项堆的基本操作4. 二项堆的C实现(完整源码)5. 二项堆的C测试程序 转载请注明出处:http://www.cnblogs.com/skywan…
概要 上一章介绍了二项堆的基本概念,并通过C语言实现了二项堆.本章是二项堆的C++实现. 目录1. 二项树的介绍2. 二项堆的介绍3. 二项堆的基本操作4. 二项堆的C++实现(完整源码)5. 二项堆的C++测试程序 转载请注明出处:http://www.cnblogs.com/skywang12345/p/3656005.html 更多内容:数据结构与算法系列 目录 (01) 二项堆(一)之 图文解析 和 C语言的实现(02) 二项堆(二)之 C++的实现(03) 二项堆(二)之 Java的实…
概要 前面分别通过C和C++实现了二项堆,本章给出二项堆的Java版本.还是那句老话,三种实现的原理一样,择其一了解即可. 目录1. 二项树的介绍2. 二项堆的介绍3. 二项堆的基本操作4. 二项堆的Java实现(完整源码)5. 二项堆的Java测试程序 转载请注明出处:http://www.cnblogs.com/skywang12345/p/3656098.html 更多内容:数据结构与算法系列 目录 (01) 二项堆(一)之 图文解析 和 C语言的实现(02) 二项堆(二)之 C++的实现…
版权声明:本文为博主原创文章,博客地址:,欢迎大家相互转载交流. 使用R语言做逻辑回归的时候,当自变量中有分类变量(大于两个)的时候,对于回归模型的结果有一点困惑,搜索相关知识发现不少人也有相同的疑问,通过查阅资料这里给出自己的理解. 首先看一个实例(数据下载自:http://freakonometrics.free.fr/db.txt) > db <- read.table("db.txt",header=TRUE,sep=";")> head(…
import org.apache.log4j.{Level, Logger} import org.apache.spark.ml.classification.LogisticRegression import org.apache.spark.ml.linalg.Vectors import org.apache.spark.sql.SparkSession /** * 逻辑回归 * Created by zhen on 2018/11/20. */ object LogisticRegr…
[0]README 0.1) 本文文字描述部分转自 数据结构与算法分析, 旨在理解 优先队列——二项队列(binominal queue) 的基础知识: 0.2) 本文核心的剖析思路均为原创(insert,merge和deleteMin的操作步骤图片示例), 源代码均为原创: 0.3) for original source code, please visit https://github.com/pacosonTang/dataStructure-algorithmAnalysis/tree…
二叉堆(Binary Heap) 二叉堆是完全二叉树(或者近似完全二叉树):其满足堆的特性:父节点的值>=(<=)任何一个子节点的键值,并且每个左子树或者右子树都是一 个二叉堆(最小堆或者最大堆):一般使用数组构建二叉堆,对于array[i]而言,其左子节点为array[2*i],其右子节点为 array[2*i+1]:二叉堆支持插入,删除,查找最大(最小)键值的操作,但是合并二叉堆的复杂度较高,时间复杂度为O(N):但是二项堆或者斐波 那契堆则仅需要O(logN): 二项树(Binomial…
package Spark_MLlib import javassist.bytecode.SignatureAttribute.ArrayType import org.apache.spark.sql.SparkSession import org.apache.spark.ml.{Pipeline, PipelineModel} import org.apache.spark.ml.classification.LogisticRegression import org.apache.sp…
一:梯度下降: 梯度下降本质上是对极小值的无限逼近.先求得梯度,再取其反方向,以定步长在此方向上走一步,下次计算则从此点开始,一步步接近极小值.需要注意的是步长的取值,如果过小,则需要多次迭代,耗费大量时间才能取得极小值;如果过大,则可能难以取得较为接近极小值的点,在极小值两边来回跳跃,无法接近极小值. 而步长的取值往往于梯度有关,如果梯度的值较大,则步长可以取大的值,如果梯度较小,则步长应取较小值. 优势:高效,优化途径多 劣势:需要一些超参数:regularization(正则化)参数以及n…