(数论)51NOD 1135 原根】的更多相关文章

题目链接:51nod 1135 原根 设 m 是正整数,a是整数,若a模m的阶等于φ(m),则称 a 为 模m的一个原根.(其中φ(m)表示m的欧拉函数) 阶:gcd(a,m)=1,使得成立的最小的 r,称为 a 对 模m 的 阶. φ(m):在[1,m)的区间内与m互质的数的个数. 求模素数p的原根a的方法: 因为p为素数,所以φ(p)=p-1, 这题就是要找最小的a使得 a^(p-1)%p = 1 成立(根据费马小定理,该式一定成立), 先求p-1所有不同的 质因子 p1,p2-pm, 对任…
题目链接 建议与上一篇欧拉函数介绍结合食用. 知识点:1.阶:a和模m互质,使a^d≡1(mod m)成立的最小正整数d称为a对模m的阶(指数)   例如: 2^2≡1(mod3),2对模3的阶为2; 2^3≡1(mod7),2对模7的阶为3;2.欧拉函数φ(m):在[1,m)的区间内与m互质的数的个数.可见前一篇blog3.设m是正整数,a是整数,若a模m的阶等于φ(m),则称a为模m的一个原根. 求模素数p的原根a的方法: 对质数 p, φ(p) = p-1, 这题就是要找最小的a使得 a^…
设m是正整数,a是整数,若a模m的阶等于φ(m),则称a为模m的一个原根.(其中φ(m)表示m的欧拉函数)   给出1个质数P,找出P最小的原根. Input 输入1个质数P(3 <= P <= 10^9) Output 输出P最小的原根. Input示例 3 Output示例 2解:使用快速幂的时候小心int爆了. #include <stdio.h> #include <math.h> #include <string.h> #define CLR(x)…
题意 题目链接 Sol 可以证明素数的原根不会超过他的\(\frac{1}{4}\) 那么预处理出\(P - 1\)的所有的质因数\(p_1, p_2 \dots p_k\),暴力判断一下,如果$\exists i, a^{\frac{P - 1}{p_i}} \equiv 1 \pmod {P - 1} $ 那么说明\(a\)不是\(P\)的原根,因为根据原根的定义,需要保证\(P-1\)是第一个满足\(a^{P - 1} \equiv 1 \pmod {P - 1}\)的数 #include…
%%% dalao Orz ,筛素数到sqrt(n),分解ϕ(p),依次枚举判断就好了 #include<cstdio> #include<cstring> #include<iostream> #include<algorithm> #include<cmath> #define N 100000 #define LL long long using namespace std; LL prime[100010],tot,cnt,p[10001…
1135 原根  基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 设m是正整数,a是整数,若a模m的阶等于φ(m),则称a为模m的一个原根.(其中φ(m)表示m的欧拉函数) 给出1个质数P,找出P最小的原根. Input 输入1个质数P(3 <= P <= 10^9) Output 输出P最小的原根. Input示例 3 Output示例 2 AC代码 就是找到最小的数x,使 #include <stdio.h> #include &l…
[题意]给定p,求p的原根g.3<=p<=10^9. [算法]数学 [题解]p-1= p1^a1 * p2^a2 * pk^ak,g是p的原根当且仅当对于所有的pi满足g^[ (p-1)/pi ] ≠ 1 (%p) g一般很小,暴力求. #include<cstdio> #include<cmath> using namespace std; ],tot; int power(int x,int k){ ; while(k){ )ans=1ll*ans*x%p; x=1…
题意: 给你n(不超过200w)个数,和一个数r,问你有多少种方案,使得你取出某个子集,能够让它们的乘积 mod 2017等于r. 2017有5这个原根,可以使用离散对数(指标)的思想把乘法转化成加法,然后就可以用bitset优化dp了. 裸的dp方程是f(i,j)=f(i-1,j)+f(i-1,(j-I(a(i)))%2016),第一维可以滚动.I(i)规定为i的指标,但是我们这里不像<数论概论>那本书上把I(1)规定为2016,而当成0,比较方便. #include<cstdio&g…
原文链接https://www.cnblogs.com/zhouzhendong/p/51Nod1123.html 题目传送门 - 51Nod1123 题意 $T$ 组数据. 给定 $A,B,C$,求出使得 $x^A \equiv C \pmod B$ 的所有 $x$,保证解的个数不超过 $\sqrt B$ . $T\leq 100,1\leq A,B,C \leq 10^9$ 题解 先记一下写这一题的感受: 1. 写的过程中代码长度峰值达到过 300 行,好久没写码农题了,感到自己码力大减.…
原文链接https://www.cnblogs.com/zhouzhendong/p/BZOJ2219.html 题目传送门 - BZOJ2219 题意 求同余方程 $x^A\equiv B \pmod{C}$ 的解的个数,其中 $C$ 为一个奇数. $1\leq A,B\leq 10^9,1\leq \lfloor C/2 \rfloor \leq 5\times 10^8$ 题解 UPD(2018-09-10): 详见数论总结. 传送门 - https://www.cnblogs.com/z…
基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 设m是正整数,a是整数,若a模m的阶等于φ(m),则称a为模m的一个原根.(其中φ(m)表示m的欧拉函数) 给出1个质数P,找出P最小的原根. Input 输入1个质数P(3 <= P <= 10^9) Output 输出P最小的原根. Input示例 3 Output示例 2 /* 求素数的最小原根. 由定理a^i==1(mod)时(i<p) 当且仅当i==p-1 成立 则a为p的原根. 把p-1质因数分解,…
数论: 51nod 1240 莫比乌斯函数 51nod 1135 原根 图论: 51nod 1264 线段相交 51nod 1298 圆与三角形 dp: 数位dp: hdu 4734 51nod 1009…
Root Time Limit: 30000/15000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total Submission(s): 34    Accepted Submission(s): 6 Problem Description Given a number sum(1≤sum≤100000000),we have m queries which contains a pair (xi,yi) a…
Root                                                                          Time Limit: 30000/15000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)                                                                                    …
ACM&OI 基础数学算法专题 一.数论基础 质数及其判法 (已完结) 质数的两种筛法 (已完结) 算数基本定理与质因数分解 (已完结) 约数与整除 (已完结) 整除分块 (已完结) 最大公约数.最小公倍数的两种求法 (已完结) 同余与剩余类 (已完结) 互质与欧拉函数 (已完结) 快速幂 (已完结) 费马小定理与威尔逊定理 (已完结) 欧拉定理及其推论.普适形式 裴属定理与拓展欧几里得算法 乘法逆元的求法 乘法逆元的线性筛法 线性同余方程 拉格朗日插值到中国剩余定理 拓展中国剩余定理 二.迪利…
注:转载本文须标明出处. 原文链接https://www.cnblogs.com/zhouzhendong/p/Number-theory.html 数论算法 剩余系相关 学习笔记 (基础回顾,(ex)CRT,(ex)lucas,(ex)BSGS,原根与指标入门,高次剩余,Miller_Robin+Pollard_Rho) 本文概要 1. 基础回顾 2. 中国剩余定理 (CRT) 及其扩展 3. 卢卡斯定理 (lucas) 及其扩展 4. 大步小步算法 (BSGS) 及其扩展 5. 原根与指标入…
题目描述 在ACM_DIY群中,有一位叫做“傻崽”的同学由于在数论方面造诣很高,被称为数轮之神!对于任何数论问题,他都能瞬间秒杀!一天他在群里面问了一个神题: 对于给定的3个非负整数 A,B,K 求出满足 (1) X^A = B(mod 2*K + 1) (2) X 在范围[0, 2K] 内的X的个数!自然数论之神是可以瞬间秒杀此题的,那么你呢? 输入 第一行有一个正整数T,表示接下来的数据的组数( T <= 1000) 之后对于每组数据,给出了3个整数A,B,K (1 <= A, B <…
数论入门2 另一种类型的数论... GCD,LCM 定义\(gcd(a,b)\)为a和b的最大公约数,\(lcm(a,b)\)为a和b的最小公倍数,则有: 将a和b分解质因数为\(a=p1^{a1}p2^{a2}p3^{a3}...pn^{an},b=p1^{b1}p2^{b2}p3^{b3}...pn^{bn}\),那么\(gcd(a,b)=\prod_{i=1}^{n}pi^{min(ai,bi)},lcm(a,b)=\prod_{i=1}^{n}pi^{max(ai,bi)}\)(0和任何…
刚学了这方面的知识,总结一下.推荐学习数论方面的知识还是看书学习,蒟蒻看的是<初等数论>学的. 这里也推荐几个总结性质的博客,学习大佬的代码和习题. 原根:https://blog.csdn.net/fuyukai/article/details/50894609 BSGS:https://www.cnblogs.com/cjyyb/p/8810050.html https://blog.csdn.net/sodacoco/article/details/81515576 然后也没什么好说的啦…
/* * POJ_2407.cpp * * Created on: 2013年11月19日 * Author: Administrator */ #include <iostream> #include <cstdio> #include <cstring> using namespace std; typedef long long ll; const int maxn = 1000015; bool u[maxn]; ll su[maxn]; ll num; ll…
1080 两个数的平方和 基准时间限制:1 秒 空间限制:131072 KB 分值: 5         难度:1级算法题 给出一个整数N,将N表示为2个整数i j的平方和(i <= j),如果有多种表示,按照i的递增序输出.   例如:N = 130,130 = 3^2 + 11^2 = 7^2 + 9^2 (注:3 11同11 3算1种) Input 一个数N(1 <= N <= 10^9) Output 共K行:每行2个数,i j,表示N = i^2 + j^2(0 <= i…
题意 题目链接 Sol 这题是来搞笑的吧.. 考虑一个数的贡献是\(O(\frac{N}{i})\) 直接数论分块. #include<bits/stdc++.h> #define Pair pair<int, int> #define MP(x, y) make_pair(x, y) #define fi first #define se second #define int long long #define LL long long #define ull unsigned…
题目: 设m是正整数,a是整数,若a模m的阶等于φ(m),则称a为模m的一个原根.(其中φ(m)表示m的欧拉函数) 给出1个质数P,找出P最小的原根. Input 输入1个质数P(3 <= P <= 10^9) Output 输出P最小的原根. Input示例 3 Output示例 2 分析: 原根的板子题了. 原根知识详解: 点我萌萌哒 实现: #include <bits/stdc++.h> using namespace std; typedef long long LL;…
原文链接https://www.cnblogs.com/zhouzhendong/p/51Nod1039.html 题目传送门 - 51Nod1039 题意 题解 这题我用求高次剩余的做法,要卡常数. UPD(2018-09-10): 详见数论总结. 传送门 - https://www.cnblogs.com/zhouzhendong/p/Number-theory-Residue-System.html 代码 #include <bits/stdc++.h> using namespace…
原文链接https://www.cnblogs.com/zhouzhendong/p/51Nod1038.html 题目传送门 - 51Nod1038 题意 题解 在模质数意义下,求高次剩余,模板题. UPD(2018-09-10): 详见数论总结. 传送门 - https://www.cnblogs.com/zhouzhendong/p/Number-theory-Residue-System.html 代码 优化了一下代码……原来的那个在这一份后面…… #include <bits/stdc…
[CF913G]Power Substring 题意:T组询问,每次给定一个数a,让你求一个k,满足$2^k$的10进制的后$min(100,length(k))$位包含a作为它的子串.你只需要输出一个k,不需要最小化k的值,保证有解. $T\le 2000,a\le 10^{11}$ 题解:神题. 假设a有n位,$2^k=x$,$x=a\times 10^m+b(\mod 10^{n+m})$,我们显然有$k\ge n+m$,所以$2^{n+m}\mid x$,又因为$2^{n+m}\mid…
Primitive Roots Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 2479   Accepted: 1385 Description We say that integer x, 0 < x < p, is a primitive root modulo odd prime p if and only if the set { (xi mod p) | 1 <= i <= p-1 } is eq…
1225 余数之和 题目连接: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1225 Description F(n) = (n % 1) + (n % 2) + (n % 3) + ...... (n % n).其中%表示Mod,也就是余数. 例如F(6) = 6 % 1 + 6 % 2 + 6 % 3 + 6 % 4 + 6 % 5 + 6 % 6 = 0 + 0 + 0 + 2 + 1 + 0 = 3. 给出n…
这题好像是神题...V1 V2 V3分别涵盖了51nod 5级算法题 6级算法题 难题 讨论区的曹鹏神牛好强啊...一种做法切了V1 V2 V3,而且做法是一步一步优化的 还没去看优化的部分,未优化已经能过V1了 设g(i)为结尾编号>n/2的长度为i的合法链的方案数,v(i)为长度为i的合法字符串的方案数 v(x)=g(1)*v(x-1)+g(2)*v(x-2)+g(3)*v(x-3)+...+g(p)*v(x-p) 这个p显然是logn级别的,递推算一下就行了,时间复杂度O(MlogN),就…
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1010 1010 只包含因子2 3 5 基准时间限制:1 秒 空间限制:131072 KB 分值: 10 难度:2级算法题 收藏 关注 K的因子中只包含2 3 5.满足条件的前10个数是:2,3,4,5,6,8,9,10,12,15. 所有这样的K组成了一个序列S,现在给出一个数n,求S中 >= 给定数的最小的数. 例如:n = 13,S中 >= 13的最小的数是15,…