图的最小生成树——Prim算法】的更多相关文章

用prim算法构建最小生成树适合顶点数据较少而边较多的图(稠密图) prim算法生成连通图的最小生成树模板伪代码: G为图,一般为全局变量,数组d为顶点与集合s的最短距离 Prim(G, d[]){ 初始化; for (循环n次){ u = 使d[u]最小的还未访问的顶点的标号; 记u 已被访问; for(从u出发到达的所有顶点v){ if (v未被访问&&以u为中介点使得v与集合S的嘴短距离d[v]更优){ 将G[u][v]赋值给v与结合S的最短距离d[v]; } } } } 邻接矩阵版…
Prim算法 Prim算法求最小生成树是采取蓝白点的思想,白点代表已经加入最小生成树的点,蓝点表示未加入最小生成树的点. 进行n次循环,每次循环把一个蓝点变为白点,该蓝点应该是与白点相连的最小边权的是当前蓝点中最小的.这样就相当于向生成树中添加了n-1次最小的边,最后得到的一定是最小生成树. #include<cstdio> #include<cstring> #define N 42000 using namespace std; int next[N],to[N],dis[N]…
//归并排序递归方法实现 #include <iostream> #include <cstdio> using namespace std; #define maxn 1000005 int a[maxn], temp[maxn]; long long ans; void MergeSort(int a[], int l, int mid, int r) { ; int i = l, n = mid, j = mid, m = r; while ( i<n &&am…
最小生成树,普利姆算法. 简述算法: 先初始化一棵只有一个顶点的树,以这一顶点开始,找到它的最小权值,将这条边上的令一个顶点添加到树中 再从这棵树中的所有顶点中找到一个最小权值(而且权值的另一顶点不属于这棵树) 重复上一步.直到所有顶点并入树中. 图示: 注:以a点开始,最小权值为1,另一顶点是c,将c加入到最小生成树中.树中 a-c 在最小生成树中的顶点找到一个权值最小且另一顶点不在树中的,最小权值是4,另一个顶点是f,将f并入树中, a-c-f 重复上一步骤,a-c-f-d, a-c-f-d…
Highways POJ-1751 最小生成树 Prim算法 题意 有一个N个城市M条路的无向图,给你N个城市的坐标,然后现在该无向图已经有M条边了,问你还需要添加总长为多少的边能使得该无向图连通.输出需要添加边的两端点编号即可. 解题思路 这个可以使用最短路里面的Prim算法来实现,对于已经连接的城市,处理方式是令这两个城市之间的距离等于0即可. prim算法可以实现我们具体的路径输出,Kruskal算法暂时还不大会. 代码实现 #include<cstdio> #include<cs…
求最小生成树(Prim算法) 我对提示代码做了简要分析,提示代码大致写了以下几个内容 给了几个基础的工具,邻接表记录图的一个的结构体,记录Prim算法中最近的边的结构体,记录目标边的结构体(始末点,值). 初始化记录了图,规定了从0号节点开始构建. 给了这么多东西,不能不用,对吧,下面就是题目以及算法 1000(ms) 10000(kb) 2490 / 4945 Tags: 生成树 求出给定无向带权图的最小生成树.图的定点为字符型,权值为不超过100的整形.在提示中已经给出了部分代码,你只需要完…
最小生成树\(Prim\)算法 我们通常求最小生成树有两种常见的算法--\(Prim\)和\(Kruskal\)算法,今天先总结最小生成树概念和比较简单的\(Prim\)算法 Part 1:最小生成树基础理论 定义 一个有 \(n\) 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 \(n\) 个结点,并且有保持图连通的最少的边. --来自百度百科 我们用比较通俗的语言来讲:(百度百科的解释实在是太鬼了,我这个明白人都看着迷糊) 给定一张包含\(n\)个点\(m\)条边的连通带权…
最小生成树,Prim算法与Kruskal算法,408方向,思路与实现分析 最小生成树,老生常谈了,生活中也总会有各种各样的问题,在这里,我来带你一起分析一下这个算法的思路与实现的方式吧~~ 在考研中呢,最小生成树虽然是只考我们分析,理解就行,但我们还是要知道底层是怎么实现的,话不多说,进入正题~~ 什么是生成树?什么是最小生成树 总所周知,对于一个无向连通图,我们想把他看成一个树的话,那么就不能太乱,也就引出了,如果对于一个生成树(不唯一,满足条件即可),如果砍去它的一条边,则会变成非连通图,如…
最小生成树prim算法实现 所谓生成树,就是n个点之间连成n-1条边的图形.而最小生成树,就是权值(两点间直线的值)之和的最小值. 首先,要用二维数组记录点和权值.如上图所示无向图: int map[7][7];        map[1][2]=map[2][1]=4;        map[1][3]=map[3][1]=2;        ...... 然后再求最小生成树.具体方法是: 1.先选取一个点作起始点,然后选择它邻近的权值最小的点(如果有多个与其相连的相同最小权值的点,随便选取一…
Kruskal算法 图的最小生成树的算法之一,运用并查集思想来求出最小生成树. 基本思路就是把所有边从小到大排序,依次遍历这些边.如果这条边所连接的两个点在一个连通块里,遍历下一条边,如果不在,就把这条边加入连通块,这样就可以保证生成树的边权最小. 我们使用并查集来判断两个点是否在同一个连通块里,如果在,他们的find会相同,否则不在. #include<cstdio> #include<algorithm> #define N 42000 using namespace std;…