ScSPM】的更多相关文章

前言 上一篇提到了SPM.这篇博客打算把ScSPM和LLC一起总结了.ScSPM和LLC其实都是对SPM的改进.这些技术,都是对特征的描述.它们既没有创造出新的特征(都是提取SIFT,HOG, RGB-histogram et al),也没有用新的分类器(也都用SVM用于最后的image classification),重点都在于如何由SIFT.HOG形成图像的特征(见图1).从BOW,到BOW+SPM,都是在做这一步.说到这,怕会迷糊大家------SIFT.HOG本身不就是提取出的特征么,它…
Linear Spatial Pyramid Matching using Sparse Coding for Image Classification (CVPR'09) 稀疏编码系列: (一)----Spatial Pyramid 小结 (二)----图像的稀疏表示——ScSPM和LLC的总结 (三)----理解sparse coding (四)----稀疏模型与结构性稀疏模型 李菲菲 bag of words:现在Computer Vision中的Bag of words来表示图像的特征描…
前言: 场景感知其实不分三维场景和二维场景,可以使用通用的方法,不同之处在于数据的形式,以及导致前期特征提取及后期在线场景分割过程.场景感知即是场景语义分析问题,即分析场景中物体的特征组合与相应场景的关系,可以理解为一个通常的模式识别问题. 论文系列对稀疏编码介绍比较详细...本文经过少量修改和注释,如有不适,请移步原文 code下载:http://www.ifp.illinois.edu/~jyang29/ScSPM.htm 如有评论,请拜访原文.原文链接:http://blog.csdn.n…
为啥会有SPM→ScSPM呢?原因之一是为了寻找better coding + better pooling的方式提高性能,原因之二就是提高速度.如何提高速度?这里的速度,不是Coding+Pooling的速度,而是分类器的速度.SPM设计的是一个Linear feature,在文章中作者用于实验则是用了nonlinear SVM(要用Mercer Kernels).相比linear SVM,nonlinear SVM在training和testing的时候速度会慢的.至于其原因,我们不妨看看S…
理解sparse coding 稀疏编码系列: (一)----Spatial Pyramid 小结 (二)----图像的稀疏表示——ScSPM和LLC的总结 (三)----理解sparse coding (四)----稀疏模型与结构性稀疏模型 --------------------------------------------------------------------------- 本文的内容主要来自余凯老师在CVPR2012上给的Tutorial.前面在总结ScSPM和LLC的时候,…
Spatial Pyramid Matching 小结 稀疏编码系列: (一)----Spatial Pyramid 小结 (二)----图像的稀疏表示——ScSPM和LLC的总结 (三)----理解sparse coding (四)----稀疏模型与结构性稀疏模型 --------------------------------------------------------------------------- SPM [1]全称是Spatial Pyramid Matching,出现的背景…
Data representation往往基于如下最小化问题:         (1) 其中X是观测到的数据的特征矩阵,D是字典,Z是字典上的描述.约束项和使得字典dictionary和描述code具有一定结构性.当D给定时,确定Z的过程叫做representation persuit.当D和Z同时未知时,确定D就是dictionary learning的问题. 稀疏表示,通常对Z做约束,使得Z中的每一列只能取少量的非0系数.其中最简单的约束项就是        (2) 这时问题就变成了LASS…
转:http://www.sigvc.org/bbs/thread-72-1-1.html 一.特征提取Feature Extraction:   SIFT [1] [Demo program][SIFT Library] [VLFeat]   PCA-SIFT [2] [Project]   Affine-SIFT [3] [Project]   SURF [4] [OpenSURF] [Matlab Wrapper]   Affine Covariant Features [5] [Oxfo…
日志 20170410 Coursera机器学习 2017.11.28 update deeplearning 台大的机器学习课程:台湾大学林轩田和李宏毅机器学习课程 Coursera机器学习 Week 5: Neural Networks: Learning 本来上周开始该学习这个内容,也是先提交了作业,今天才来看看具体的代码:感觉这个课程本身对基础巩固很好.没有连续学习感觉有些有点忘了,最终的目的是自己能够推导这个内容. 本来想跟着学习搞个电子证书的,结果申请的到期时间是2017.3.31;…
http://www.cv-foundation.org/openaccess/CVPR2016.py ORAL SESSION Image Captioning and Question Answering Monday, June 27th, 9:00AM - 10:05AM. These papers will also be presented at the following poster session 1   Deep Compositional Captioning: Descr…
Theano – CPU/GPU symbolic expression compiler in python (from MILA lab at University of Montreal) Torch – provides a Matlab-like environment for state-of-the-art machine learning algorithms in lua (from Ronan Collobert, Clement Farabet and Koray Kavu…
1,SPM 1,1source paper:http://lear.inrialpes.fr/pubs/2007/ZMLS07/ZhangMarszalekLazebnikSchmid-IJCV07-ClassificationStudy.pdf author:http://slazebni.cs.illinois.edu/ 1,2Web bing:https://www.bing.com/search?q=%E7%A9%BA%E9%97%B4%E9%87%91%E5%AD%97%E5%A1%9…
from:http://www.sigvc.org/bbs/thread-72-1-1.html 一.特征提取Feature Extraction:   SIFT [1] [Demo program][SIFT Library] [VLFeat]   PCA-SIFT [2] [Project]   Affine-SIFT [3] [Project]   SURF [4] [OpenSURF] [Matlab Wrapper]   Affine Covariant Features [5] [O…
CVPR2016 Paper list ORAL SESSIONImage Captioning and Question Answering Monday, June 27th, 9:00AM - 10:05AM. These papers will also be presented at the following poster session 1 Deep Compositional Captioning: Describing Novel Object Categories Witho…
前言: 接上一篇:AI:模式识别的数学表示 在图像处理PR领域,相对于ANN方法,其他的方法一般称为传统方法.在结构上,几乎所有的PR方法都是可解释的.且任一传统方法,在一定约束下,可以转换为SV近邻法,即与SVM方法具有相似性,且理论函数复杂度不小于同精度的基于SV的决策树方法. 而在规则和语义上,ANN方法一般是无法使用明确函数解释的,称之为PR的语义黑箱. 对于图像处理IP来说,一般形式下的模式函数都是(降维)压缩hash函数. 而对于传统模式识别方法,特征提取和模式识别模型一般都有固定的…
图像稀疏编码总结:LLC和SCSPM,文章对稀疏编码讲解非常详细. <Locality-constrained Linear Coding for Image Classification>的作者提供Matlab的代码实现,见http://www.ifp.illinois.edu/~jyang29/LLC.htm. 下面是根据作者的代码,基于OpenCV,实现的C++版的LLC: Matlab Code:www.ifp.illinois.edu/~jyang29/LLC.htm <spa…
百度百科的定义.此文引用了其他博客的一些图像,如有侵权,邮件联系删除. 申明一下,SLAM不是一个算法,而是一个工程. 在计算机视觉中, 三维重建是指根据单视图或者多视图的图像重建三维信息的过程. 由于单视频的信息不完全,因此三维重建需要利用经验知识..而多视图的三维重建(类似人的双目定位)相对比较容易, 其方法是先对摄像机进行标定, 即计算出摄像机的图象坐标系与世界坐标系的关系.然后利用多个二维图象中的信息重建出三维信息. 三维重建根据时间和场景的粒度不同需要引入不同的定义和工程化方法: 一.…
原文链接:http://blog.csdn.net/jwh_bupt/article/details/27713453 去年年底的时候在一篇博客中,用ANN的框架解释了BOW模型[1],并与LSH[2]等哈希方法做了比较,当时得出了结论,BOW就是一种经过学习的Hash函数.去年再早些时候,又简单介绍过LLC[3]等稀疏的表示模型,当时的相关论文几乎一致地得出结论,这些稀疏表示的方法在图像识别方面的性能一致地好于BOW的效果.后来我就逐渐产生两个疑问: 1)BOW在检索时好于LSH,那么为什么不…