RPN网络】的更多相关文章

Region Proposal Network RPN的实现方式:在conv5-3的卷积feature map上用一个n*n的sliding window(论文中n=3)生成一个长度为256(ZF网络)或512(对应于VGG网络)维长度的全连接特征.然后再这个256维或512维的特征后产生两个分支的全连接层: 1. reg-layer:用于预测proposal的中心锚点对应的proposal的坐标x,y和宽高w,h: 2. cls-layer:用于判定该proposal是前景还是背景.slidi…
在测试MIT Scene Parsing Benchmark (SceneParse150)使用FCN网络时候,遇到Caffe错误. 遇到错误:不可识别的网络层crop 网络层 CreatorRegistry& registry = Registry();    CHECK_EQ(registry.count(type), 1) << "Unknown layer type: " << type        << " (known…
RPN网络是faster与fast的主要区别,输入特征图,输出region proposals以及相应的分数. # -------------------------------------------------------- # Faster R-CNN # Copyright (c) 2015 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Ross Girshick and…
YOLOv1基本思想 YOLO将输入图像分成SxS个格子,若某个物体 Ground truth 的中心位置的坐标落入到某个格子,那么这个格子就负责检测出这个物体. 每个格子预测B个bounding box及其置信度(confidence score),以及C个类别概率.bbox信息(x,y,w,h)为物体的中心位置相对格子位置的偏移及宽度和高度,均被归一化.置信度反映是否包含物体以及包含物体情况下位置的准确性,定义为\(Pr(Object) \times IOU^{truth}_{pred},…
 Faster R-CNN,由两个模块组成: 第一个模块是深度全卷积网络 RPN,用于 region proposal; 第二个模块是Fast R-CNN检测器,它使用了RPN产生的region proposal进行物体检测. 通过将 region proposal 融入 CNN 网络中, 整个系统是一个单一的,统一的对象检测网络. 具体为使用 RPN 的技术代替之前 Selection Search, 完成 region proposal, 那么 RPN 需要完成两个任务: 判断 ancho…
本文逐步介绍YOLO v1~v3的设计历程. YOLOv1基本思想 YOLO将输入图像分成SxS个格子,若某个物体 Ground truth 的中心位置的坐标落入到某个格子,那么这个格子就负责检测出这个物体. 每个格子预测B个bounding box及其置信度(confidence score),以及C个类别概率.bbox信息(x,y,w,h)为物体的中心位置相对格子位置的偏移及宽度和高度,均被归一化.置信度反映是否包含物体以及包含物体情况下位置的准确性,定义为\(Pr(Object) \tim…
1.目标检测 检测图片中所有物体的 类别标签 位置(最小外接矩形/Bounding box) 区域卷积神经网络R-CNN 模块进化史 2.区域卷积神经网络R-CNN Region proposals+手工特征+分类器 R-CNN模块划分 模块1:Selective Search(SS)获取区域 ~2000个区域Region proposals 跟分类无关,包含物体 区域预处理 Bounding box膨胀 尺寸变换成227x227 模块2:AlexNet 网络 对所有区域进行特征提取 fine-…
一.模块概述 上节的最后,我们进行了如下操作获取了有限的proposal, # [IMAGES_PER_GPU, num_rois, (y1, x1, y2, x2)] # IMAGES_PER_GPU取代了batch,之后说的batch都是IMAGES_PER_GPU rpn_rois = ProposalLayer( proposal_count=proposal_count, nms_threshold=config.RPN_NMS_THRESHOLD, # 0.7 name="ROI&q…
零.参考资料 有关FPN的介绍见『计算机视觉』FPN特征金字塔网络. 网络构架部分代码见Mask_RCNN/mrcnn/model.py中class MaskRCNN的build方法的"inference"分支. 1.Keras调用GPU设置 [*]指定GPU import os os.environ["CUDA_VISIBLE_DEVICES"] = "2" [**]按需分配 import tensorflow as tf import ker…
1.介绍 图为faster rcnn的rpn层,接自conv5-3 图为faster rcnn 论文中关于RPN层的结构示意图 2 关于anchor: 一般是在最末层的 feature map 上再用3*3的窗口去卷积特征.当3*3的卷积核滑动到特征图的某一个位置时,以当前滑动窗口中心为中心映射到原图的一个区域(注意 feature map 上的一个点是可以映射到原图的一个区域的,这个很好理解,感受野起的作用啊-...),以原图上这个区域的中心对应一个尺度和长宽比,就是一个anchor了.fas…