t-SNE可视化(MNIST例子)】的更多相关文章

如下所示: import pickle as pkl import numpy as np from matplotlib import pyplot as plt from tsne import bh_sne import sys with open("data", 'rb') as f: if sys.version_info > (3, 0): data = pkl.load(f, encoding='latin1') else: data = pkl.load(f) d…
下面是TensorFlow可视化MNIST数据集识别程序,可视化内容是,TensorFlow计算图,表(loss, 直方图, 标准差(stddev)) # -*- coding: utf-8 -*- import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data from tensorflow.contrib.tensorboard.plugins import projector old_v…
简述] 我们在学习编程语言时,往往第一个程序就是打印“Hello World”,那么对于人工智能学习系统平台来说,他的“Hello World”小程序就是MNIST手写数字训练了.MNIST是一个手写数字的数据集,官网是Yann LeCun's website.数据集总共包含了60000行的训练数据集(mnist.train)和10000行的测试数据集(mnist.test),每一个数字的大小为28*28像素.通过利用Tensorflow人工智能平台,我们可以学习到人工智能学习平台是如何通过数据…
At some fundamental level, no one understands machine learning. It isn’t a matter of things being too complicated. Almost everything we do is fundamentally very simple. Unfortunately, an innate human handicap interferes with us understanding these si…
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('MNIST_data', one_hot = True) # # add layer # def add_layer(inputs, in_size, out_size, activation_function = None): Weights = tf.Vari…
​1.联通ColaB 2.运行最基础mnist例子,并且打印图表结果  # https://pypi.python.org/pypi/pydot#!apt-get -qq install -y graphviz && pip install -q pydot#import pydotfrom __future__ import print_functionimport kerasfrom keras.datasets import mnistfrom keras.models import…
最近在做一个深度学习分类项目,想看看训练集数据的分布情况,但由于数据本身维度接近100,不能直观的可视化展示,所以就对降维可视化做了一些粗略的了解以便能在低维空间中近似展示高维数据的分布情况,以下内容不会很深入细节,但足以让你快速使用这门技术. 什么是降维可视化? 简而言之,降维是在2维或3维中展现更高维数据(具有多个特征的数据,且彼此具有相关性)的技术. 降维思想主要有两种: 仅保留原始数据集中最相关的变量(特征选择). 寻找一组较小的新变量,其中每个变量都是输入变量的组合,包含与输入变量基本…
在调试Mnist例子之前,首先需要用vs2013编译好caffe.详情请参见: [caffe-Windows]caffe+VS2013+Windows无GPU快速配置教程 按照上述教程编译好caffe后,开始编译并调试MNIST. 1. 下载好MINIST数据:http://pan.baidu.com/s/1o7YrhKe,下载完之后解压到examples\mnist\文件夹下. 2. 修改lenet_train_test.prototxt文件: //需要修改四处地方,如下红色部分标注 name…
http://blog.csdn.net/u013677156/article/details/77893661 1.kaldi解码过程 kaldi识别解码一段语音的过程是:首先提取特征,然后过声学模型AM,然后过解码网络HCLG.fst,最后输出识别结果. HCLG是解码时的重要组成部分.HCLG.fst是由4个fst经过一系列算法(组合.确定化和最小化等)组合而成的.4个fst分别是H.fst.C.fst.L.fst和G.fst,分别是HMM模型.上下文环境.词典和语言模型对应的fst. …
1. 运行它 1. 安装caffe请参考 http://www.cnblogs.com/xuanyuyt/p/5726926.html  此例子在官网 http://caffe.berkeleyvision.org/gathered/examples/mnist.html 2. 下载训练和测试数据.caffe识别leveldb或者lmdb格式的数据. 1)这里提供转换好的LEVELDB格式数据集,解压缩到mnist例子目录下 链接:http://pan.baidu.com/s/1gfjXteV…