https://blog.csdn.net/Maxwei_wzj/article/details/80714129 n个二项式相乘可以用分治+FFT的方法,使用空间回收可以只开log个数组. #include<cstdio> #include<algorithm> #define rep(i,l,r) for (int i=(l); i<=(r); i++) using namespace std; ,mod=; ],tmp[][N]; int ksm(int a,int b…
传送门 首先,每一次有一个猎人死亡之后\(\sum w\)会变化,计算起来很麻烦,所以考虑在某一个猎人死亡之后给其打上标记,仍然计算他的\(w\),只是如果打中了一个打上了标记的人就重新选择.这样对应于每一个人的概率仍然是一样的,而\(\sum w\)在计算的过程中不会变. 因为要求最后死的概率,似乎不是很好求,考虑容斥.枚举一个集合\(S\),我们强制集合\(S\)中的猎人在\(1\)号猎人死亡之后死亡.设集合\(S\)中所有猎人的\(w\)之和为\(A\),所有猎人的\(w\)之和为\(su…
考虑容斥,枚举一个子集S在1号猎人之后死.显然这个概率是w1/(Σwi+w1) (i∈S).于是我们统计出各种子集和的系数即可,造出一堆形如(-xwi+1)的生成函数,分治NTT卷起来就可以了. #include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #include<algorithm> using namespa…
题意 LOJ #2541. 「PKUWC 2018」猎人杀 题解 一道及其巧妙的题 , 参考了一下这位大佬的博客 ... 令 \(\displaystyle A = \sum_{i=1}^{n} w_i\) , \(B\) 是已死猎人的 \(w_i\) 的总和 , \(P_i\) 是 \(i\) 当前要被杀死的概率 ... (抄博客咯) 不难有 \(\displaystyle P_i = \frac{w_i}{A-B} \tag{1}\) 如果 不考虑猎人死没死 , 都能被当做目标 qwq (鞭…
题目链接 LOJ:https://loj.ac/problem/2541 Solution 很巧妙的思路. 注意到运行的过程中概率的分母在不停的变化,这样会让我们很不好算,我们考虑这样转化:假设所有人都活着,然后随机选一个人,如果此人已死那就重新选一次. 假设当前活着的人集合为\(T\),那么射中第\(i\)个人的概率就是: \[ \sum_{i=0}^{\infty}\left(\frac{s_{all}-s_T}{s_{all}}\right)^i\frac{w_i}{s_{all}}=\f…
[LOJ2541][PKUWC2018]猎人杀(容斥,FFT) 题面 LOJ 题解 这题好神仙啊. 直接考虑概率很麻烦,因为分母总是在变化. 但是,如果一个人死亡之后,我们不让他离场,假装给他打一个标记(猎人印记???) 如果在一次选择的时候选中了一个已经被打过标记的人,那么我们就重新做一次选择. 这样显然没有任何影响. 现在考虑如何求第一个人最后一个被打上标记的概率. 我们容斥一下,枚举一下哪些人会在\(1\)之后被选择,那么容斥系数就是\((-1)\)的人数次方. 那么对于钦定的在\(1\)…
题目链接 loj2541 题解 思路很妙啊, 人傻想不到啊 觉得十分难求,考虑容斥 由于\(1\)号可能不是最后一个被杀的,我们容斥一下\(1\)号之后至少有几个没被杀 我们令\(A = \sum\limits_{i = 1}^{n} w_i\),令\(S\)表示选出那几个在\(i\)之后的\(w_i\)和 我们淘汰人之后概率的分母就改变了,很不好求 我们考虑转化一下问题,每个人被杀后依旧存在,只不过再次选中他时再选一次,是等价的 那么此时那几个人在\(1\)之后的概率 \[ \begin{al…
点此看题面 大致题意: 有\(n\)个人相互开枪,每个人有一个仇恨度\(a_i\),每个人死后会开枪再打死另一个还活着的人,且第一枪由你打响.设当前剩余人仇恨度总和为\(k\),则每个人被打中的概率为\(\frac {a_i}k\).求第\(1\)个人最后被打死的概率. 一个重要性质 对于这题,首先我们可以发现,由于一个人死后,其他人被打中概率的分母会受到影响,产生了后效性,似乎很不可维护. 因此我们需要知道一个重要性质:设\(tot=\sum_{i=1}^na_i\),则题意可以转化为,每个人…
题目:https://loj.ac/problem/2541 看了题解才会……有三点很巧妙. 1.分母如果变动,就很不好.所以考虑把操作改成 “已经选过的人仍然按 \( w_i \) 的概率被选,但是再次选中一个已经选过的人算作没有操作” . 2.然后要容斥,考虑强制点集 S 的人在 1 号点之后被选.其余随意,那么 \( ans=\sum\limits_{S} (-1)^{|S|} \sum\limits_{i=0}^{\infty} (1-\frac{w_1 + w_S}{A})^i \fr…
传送门 思路 好一个神仙题qwq 首先,发现由于一个人死之后分母会变,非常麻烦,考虑用某种方法定住分母. 我们稍微改一改游戏规则:一个人被打死时只打个标记,并不移走,也就是说可以被打多次但只算一次.容易发现这并不影响最终结果. 然而光想到这个好像没什么用? 再考虑容斥:枚举哪些人在1之后被打死,其他随意.设在1后面的人的权值为\(S\),总权值为\(sum\),那么概率就是 \[ \begin{align*} &\sum_{i=0}^{\infty} (1-\frac{w_1+S}{sum})^…