OpenCV学习(17) 细化算法(5)】的更多相关文章

本章我们看下Pavlidis细化算法,参考资料http://www.imageprocessingplace.com/downloads_V3/root_downloads/tutorials/contour_tracing_Abeer_George_Ghuneim/theo.html Computer VisiAlgorithms in Image Algebra,second edition 该算法最初是做前景轮廓跟踪的. 假设使用下面的8邻域,且前景像素值为1,背景像素值为0. 下面是该算…
本章我们学习Rosenfeld细化算法,参考资料:http://yunpan.cn/QGRjHbkLBzCrn 在开始学习算法之前,我们先看下连通分量,以及4连通性,8连通性的概念: http://www.imageprocessingplace.com/downloads_V3/root_downloads/tutorials/contour_tracing_Abeer_George_Ghuneim/connectivity.html 假设我们有二值图,背景像素值为0,前景像素值为1. 我们使…
本章我们在学习一下基于索引表的细化算法. 假设要处理的图像为二值图,前景值为1,背景值为0. 索引表细化算法使用下面的8邻域表示法: 一个像素的8邻域,我们可以用8位二进制表示,比如下面的8邻域,表示为00111000=0x38=56 我们可以枚举出各种情况下,当前像素能否删除的表,该表大小为256.它的索引即为8邻域表示的值,表中存的值为0或1,0表示当前像素不能删除,1表示可以删除.deletemark[256] 比如下图第一个表示,索引值为0,它表示孤立点,不能删除,所以deletemar…
      本章我们学习一下Hilditch算法的基本原理,从网上找资料的时候,竟然发现两个有很大差别的算法描述,而且都叫Hilditch算法.不知道那一个才是正宗的,两个算法实现的效果接近,第一种算法更好一些. 第一种算法描述参考paper和代码: Linear Skeletons from Square Cupboards Speedup Method for Real-Time Thinning Algorithm http://cis.k.hosei.ac.jp/~wakahara/Hi…
      前面一篇教程中,我们实现了Zhang的快速并行细化算法,从算法原理上,我们可以知道,算法是基于像素8邻域的形状来决定是否删除当前像素.还有很多与此算法相似的细化算法,只是判断的条件不一样.在综述文章, Thinning Methodologies-A Comprehensive Survey中描述了各种细化算法的实现原理,有兴趣可以阅读一下.       下面看看图像细化的定义以及细化算法的分类: 图像细化(Image Thinning),一般指二值图像的骨架化(Image Skel…
程序编码参考经典的细化或者骨架算法文章: T. Y. Zhang and C. Y. Suen, "A fast parallel algorithm for thinning digital patterns," Comm. ACM, vol. 27, no. 3, pp. 236-239, 1984. 它的原理也很简单:       我们对一副二值图像进行骨架提取,就是删除不需要的轮廓点,只保留其骨架点.假设一个像素点,我们定义该点为p1,则它的八邻域点p2->p9位置如下图…
最后再来看一种通过形态学腐蚀和开操作得到骨架的方法.http://felix.abecassis.me/2011/09/opencv-morphological-skeleton/ 代码非常简单: void gThin::cvmorphThin(cv::Mat& src, cv::Mat& dst)     {     if(src.type()!=CV_8UC1)         {         printf("只能处理二值或灰度图像\n");         r…
要达到的效果就是将线条尽量细化成单像素,按照论文上的Hilditch算法试了一下,发现效果不好,于是自己尝试着写了一下细化的算法,基本原理就是从上下左右四个方向向内收缩. 1.先是根据图片中的原则确定了以下16种情况 2.调试过后发现,迭代次数多了之后,原来连接着的线条会断开,分析原因如下图 3.修改了一下判断条件 4.调试过后发现还是会出现断的地方,再次分析原因如下图 5.又加了判断条件,如下图 最终实现的效果如下   对比图 对规则曲线的效果比较好 但是圆的效果不太好,有待改进 附上代码,测…
本教程我学习一下opencv中分水岭算法的具体实现方式. 原始图像和Mark图像,它们的大小都是32*32,分水岭算法的结果是得到两个连通域的轮廓图. 原始图像:(原始图像必须是3通道图像) Mark图像: 结果图像:       初始的mark图像数据如下,黄色的部分为我们的第一个mark区域,值为255,第二个区域为褐红色的区域,值为128,第三个绿色的区域,值为64.   opencv分水岭算法描述如下: 初始化mark矩阵,生成最初的注水区域. 1.设置mark图像的边框值为-1 2.…
grab cut算法是graph cut算法的改进.在理解grab cut算之前,应该学习一下graph cut算法的概念及实现方式. 我搜集了一些graph cut资料:http://yunpan.cn/QGDVdBXwkXutH      grab cut算法详细描述见资料中的pdf文件:"GrabCut" - Interactive Foreground Extraction using Iterated Graph Cuts      grab cut算法是一种基于图论的图像分…