朴素贝叶斯分类(naive bayesian,nb)源于贝叶斯理论,其基本思想:假设样本属性之间相互独立,对于给定的待分类项,求解在此项出现的情况下其他各个类别出现的概率,哪个最大,就认为待分类项属于那一类别.邮箱内垃圾邮件的筛选即应用朴素贝叶斯算法. 朴素贝叶斯分类实现的三阶段: 第一阶段,准备工作.根据具体情况确定特征属性,并对每一特征属性进行划分,然后人工对一些待分类项进行分类,形成训练样本集合.这一阶段的输入是所有待分类数据,输出是特征属性和训练样本.唯一需要人工处理的阶段,质量要求较高…