非线性数据拟合-nls】的更多相关文章

code{white-space: pre;} pre:not([class]) { background-color: white; }if (window.hljs && document.readyState && document.readyState === "complete") { window.setTimeout(function() { hljs.initHighlighting(); }, 0);}.main-container {…
http://blog.csdn.net/ljp1919/article/details/42556261 Neural Network Toolbox为各种复杂的非线性系统的建模提供多种函数和应用程序.该工具箱提供各种监督学习模型:前向反馈,径向基核函数和动态网络等模型.同时也提供自组织图和竞争层结构(competitive layers)的非监督学习模型.该工具箱具有设计.训练.可视化与仿真神经网络的功能.基于该工具箱可以进行数据拟合.模式识别.分类和时间序列预测及其动态系统的建模和控制.…
摘要:本论文先介绍了多项式数据拟合的相关背景,以及对整个课题做了一个完整的认识.接下来对拟合模型,多项式数学原理进行了详细的讲解,通过对文献的阅读以及自己的知识积累对原理有了一个系统的认识.介绍多项式曲线拟合的基本理论,对多项式数据拟合原理进行了全方面的理论阐述,同时也阐述了曲线拟合的基本原理及多项式曲线拟合模型的建立.具体记录了多项式曲线拟合的具体步骤,在建立理论的基础上具体实现多项式曲线的MATLAB实现方法的研究,采用MATLAB R2016a的平台对测量的数据进行多项式数据拟合,介绍了M…
支持向量机(SVM)非线性数据切割 1.目标 本指导中你将学到: l  当不可能线性切割训练数据时,如何定义SVM最优化问题. l  在这样的问题上.如何配置CvSVMParams中的參数满足你的SVM: 2.动机 为什么我们有兴趣扩展SVM最优化问题来处理非线性切割训练数据?SVM在计算机视觉应用中须要一个比线性分类器更加强有力的工具. 原因在于,其实,在这样的问题上训练数据差点儿不能被一个超平面切割开.考虑一个这样的任务.比如,面部识别. 这样的情况下,训练数据由图像上的一组面部数据和非面部…
python据说功能强大,触角伸到各个领域,网上搜了一下其科学计算和工程计算能力也相当强,具备各种第三方包,除了性能软肋外,其他无可指摘,甚至可以同matlab等专业工具一较高下. 从网上找了一个使用遗传算法实现数据拟合的例子学习了一下,确实Python相当贴合自然语言,终于编程语言也能说人话了,代码整体简洁.优雅.. 代码功能:给出一个隐藏函数 例如 z=x^2+y^2,生成200个数据,利用这200个数据,使用遗传算法猜测这些数据是什么公式生成的. (说的太直白,一点都不高大上) 代码如下:…
python据说功能强大,触角伸到各个领域,网上搜了一下其科学计算和工程计算能力也相当强,具备各种第三方包,除了性能软肋外,其他无可指摘,甚至可以同matlab等专业工具一较高下. 从网上找了一个使用遗传算法实现数据拟合的例子学习了一下,确实Python相当贴合自然语言,终于编程语言也能说人话了,代码整体简洁.优雅.. 代码功能:给出一个隐藏函数 例如 z=x^2+y^2,生成200个数据,利用这200个数据,使用遗传算法猜测这些数据是什么公式生成的. (说的太直白,一点都不高大上) 代码如下:…
http://blog.csdn.net/pipisorry/article/details/49804441 常见的曲线拟合方法 1.使偏差绝对值之和最小 2.使偏差绝对值最大的最小       3.使偏差平方和最小 按偏差平方和最小的原则选取拟合曲线,并且采取二项式方程为拟合曲线的方法,称为最小二乘法. 皮皮blog 多项式拟合 多项式拟合公式 多项式阶数对数据拟合的影响 数据量较少,阶数过高,可能过拟合. 多项式拟合问题描述 假定给定一个训练数据集: 其中,是输入的观测值,是相应的输出y的…
机器学习中的预测问题通常分为2类:回归与分类. 简单的说回归就是预测数值,而分类是给数据打上标签归类. 本文讲述如何用Python进行基本的数据拟合,以及如何对拟合结果的误差进行分析. 本例中使用一个2次函数加上随机的扰动来生成500个点,然后尝试用1.2.100次方的多项式对该数据进行拟合.拟合的目的是使得根据训练数据能够拟合出一个多项式函数,这个函数能够很好的拟合现有数据,并且能对未知的数据进行预测. 代码如下: import matplotlib.pyplot as plt import …
1.多项式拟合 对散点进行多项式拟合并打印出拟合函数以及拟合后的图形import matplotlib.pyplot as pltimport numpy as npx=np.arange(1,17,1) #生成散点列表作为x的值y=np.array([4.00, 6.40, 8.00, 8.80, 9.22, 9.50, 9.70, 9.86, 10.00, 10.20, 10.32, 10.42, 10.50, 10.55, 10.58, 10.60]) #给定y的散点值#用3次多项式拟合z…
在stm32温度采样的过程中,使用到了NTC传感器,上拉接6.2K的电阻,信号给AD采样端口,通过NTC的电阻阻值表中,计算得到下面两端数据,在freemat中实现数据拟合,用于程序中温度和电压信号的转换. x = [1173.32 1203.94 1234.89 1266.77 1298.86 1331.75 1365.33 1399.55 1434.31 1469.54 1505.45 1541.66 1578.63 1616.24 1654.15 ];y=[60.000 59.000 58…
定义: 最小二乘法(又称最小平方法)是一种数学优化技术.它通过最小化误差的平方和寻找数据的最佳函数匹配.利用最小二乘法可 以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小.最小二乘法还可用于曲线拟合.其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达. 最小二乘法原理:在我们研究两个变量(x,y)之间的相互关系时,通常可以得到一系列成对的数据(x1,y1.x2,y2... xm,ym):将这些数据描绘在x -y直角坐标系中,若发现这些点在一条直线附近,可以…
2.1 案例背景 在工程应用中经常会遇到一些复杂的非线性系统,这些系统状态方程复杂,难以用数学方法准确建模.在这种情况下,可以建立BP神经网络表达这些非线性系统.该方法把未知系统看成是一个黑箱,首先用系统输入输出数据训练BP神经网络,使网络能够表达该未知函数,然后用训练好的BP神经网络预测系统输出. 本章拟合的非线性函数为\[y = {x_1}^2 + {x_2}^2\]该函数的图形如下图所示. t=-5:0.1:5; [x1,x2] =meshgrid(t); y=x1.^2+x2.^2; s…
from:https://www.zhihu.com/question/56171002/answer/155777359 GAN的作用,也就是为什么GAN会火了(有部分原因可能是因为Lecun的赞赏).如果GAN只是用来生成一些像真是数据一样的数据的话,那不会有像现在这么火.更多的,或者对于机器学习研究员来说,看待的最关键一点应该是GAN可以用来 拟合数据分布 .什么叫拟合数据分布,就是给你一个训练数据,你能通过GAN这个工具,产生和这个数据分布相似的一些数据.有了拟合数据分布的思想,并在这上…
3.1 案例背景 遗传算法(Genetic Algorithms)是一种模拟自然界遗传机制和生物进化论而形成的一种并行随机搜索最优化方法. 其基本要素包括:染色体编码方法.适应度函数.遗传操作和运行参数. 非线性函数:$y=x_{1}^{2}+x_{2}^{2}$ 3.2 模型建立 3.2.1 算法流程 遗传算法优化使用遗传算法优化BP神经网络的权值和阔值,种群中的每个个体都包含了一 个网络所有权值和阔值,个体通过适应度函数计算个体适应度值,遗传算法通过选择.交叉和变异操作找到最优适应度值对应个…
本文的主要目的是记住最主要的函数,具体的用法还得查API文档. 首先导入包: 1 %matplotlib inline 2 import numpy as np 3 import pandas as pd 4 from scipy import stats, integrate 5 import matplotlib.pyplot as plt 6 import seaborn as sns 7 sns.set(color_codes=True) 8 np.random.seed(sum(map…
SSE和RMSE比较小 拟合度R接近于1较好 * 统计参数模型的拟合优度 1.误差平方和(SSE) 2. R-Square(复相关系数或复测定系数) 3. Adjusted R-Square(调整自由度复相关系数) 4.Root mearn squared error(RMSE),(均方根误差)…
MATLAB MATLAB[1]  是美国MathWorks公司出品的商业数学软件,用于算法开发.数据可视化.数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分. MATLAB是matrix&laboratory两个词的组合,意为矩阵工厂(矩阵实验室).是由美国mathworks公司发布的主要面对科学计算.可视化以及交互式程序设计的高科技计算环境.它将数值分析.矩阵计算.科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的…
0. 算法概述 决策树(decision tree)是一种基本的分类与回归方法.决策树模型呈树形结构(二分类思想的算法模型往往都是树形结构) 0x1:决策树模型的不同角度理解 在分类问题中,表示基于特征对实例进行分类的过程,它可以被看作是if-then的规则集合:也可以被认为是定义在特征空间与类空间上的条件概率分布 1. if-then规则集合 决策树的属性结构其实对应着一个规则集合:由决策树的根节点到叶节点的每条路径构成的规则组成:路径上的内部特征对应着if条件,叶节点对应着then结论. 决…
ylbtech-杂项-数学软件:MATLAB MATLAB是美国MathWorks公司出品的商业数学软件,用于算法开发.数据可视化.数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分. MATLAB是matrix&laboratory两个词的组合,意为矩阵工厂(矩阵实验室).是由美国mathworks公司发布的主要面对科学计算.可视化以及交互式程序设计的高科技计算环境.它将数值分析.矩阵计算.科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功…
一  简单介绍 SciPy是基于NumPy开发的高级模块,它提供了许多数学算法和函数的实现,用于解决科学计算中的一些标准问题.例如数值积分和微分方程求解,扩展的矩阵计算,最优化,概率分布和统计函数,甚至包括信号处理等. 作为标准科学计算程序库,SciPy类似于Matlab的工具箱,它是Python科学计算程序的核心包,它用于有效地计算NumPy矩阵,与NumPy矩阵协同工作. SciPy库由一些特定功能的子模块构成,如下表所示: 模块 功能 cluster 矢量量化 / K-均值 constan…
1.最小二乘原理 Matlab直接实现最小二乘法的示例: close x = 1:1:100; a = -1.5; b = -10; y = a*log(x)+b; yrand = y + 0.5*rand(1,size(y,2)); %%最小二乘拟合 xf=log(x); yf=yrand; xfa = [ones(1,size(xf,2));xf] w = inv(xfa*xfa')*xfa*yf';%直接拟合得到的结果 参考资料: 1.http://blog.csdn.net/lotus_…
1.最小二乘原理 Matlab直接实现最小二乘法的示例: close x = 1:1:100; a = -1.5; b = -10; y = a*log(x)+b; yrand = y + 0.5*rand(1,size(y,2)); %%最小二乘拟合 xf=log(x); yf=yrand; xfa = [ones(1,size(xf,2));xf] w = inv(xfa*xfa')*xfa*yf';%直接拟合得到的结果 参考资料: 1.http://blog.csdn.net/lotus_…
MATLAB实例:多元函数拟合(线性与非线性) 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 更多请看:随笔分类 - MATLAB作图 之前写过一篇博文,是关于一元非线性曲线拟合,自定义曲线函数. 现在用最小二乘法拟合多元函数,实现线性拟合与非线性拟合,其中非线性拟合要求自定义拟合函数. 下面给出三种拟合方式,第一种是多元线性拟合(回归),第二三种是多元非线性拟合,实际中第二三种方法是一个意思,任选一种即可,推荐第二种拟合方法. 1. MATLA…
技术背景 在前面的几篇博客中,我们分别介绍了MindSpore的CPU版本在Docker下的安装与配置方案.MindSpore的线性函数拟合以及MindSpore后来新推出的GPU版本的Docker编程环境解决方案.这里我们在线性拟合的基础上,再介绍一下MindSpore中使用线性神经网络来拟合多变量非线性函数的解决方案. 环境配置 在按照这篇博客中的方法进行安装和配置之后,可以在本地的docker镜像仓库中找到一个mindspore的镜像: [dechin-manjaro gitlab]# d…
非线性最小二乘拟合: 解法一:用命令lsqcurvefit function f = curvefun(x, tdata) f = x() + x()*exp() * tdata); %其中x() = a; x() = b; x() = c; %数据输入 tdata = ::; cdata = 1e- * [4.54, 4.99, 5.35, 5.65, 5.90, 6.10, 6.26, 6.39, 6.50, 6.59]; %设定预测值 x0 = [0.2 0.05 0.05]; %非线性拟…
本篇博客为系列博客第二篇,主要介绍非线性最小二乘相关内容,线性最小二乘介绍请参见SLAM中的优化理论(一)-- 线性最小二乘.本篇博客期望通过下降法和信任区域法引出高斯牛顿和LM两种常用的非线性优化方法.博客中主要内容为: 非线性最小二乘介绍: 下降法相关理论(Desent Method); 信任区域理论(Trust Region Methods); 非线性最小二乘求解方法(高斯牛顿.LM) 由于个人水平有限,文中难免有解释不清晰的地方,因此希望大家结合着[1].[2]和[3]进行理解.如果在阅…
http://blog.csdn.net/pipisorry/article/details/51106570 最优化函数库Optimization 优化是找到最小值或等式的数值解的问题.scipy.optimization子模块提供了函数最小值(标量或多维).曲线拟合和寻找等式的根的有用算法. from scipy import optimize 皮皮blog 最小二乘拟合 假设有一组实验数据(xi,yi ), 事先知道它们之间应该满足某函数关系yi=f(xi),通过这些已知信息,需要确定函数…
原文链接:https://zhuanlan.zhihu.com/p/28149195 1.最小二乘拟合 实例1 import numpy as np import matplotlib.pyplot as plt from scipy.optimize import leastsq plt.figure(figsize=(9,9)) x=np.linspace(0,10,1000) X = np.array([8.19, 2.72, 6.39, 8.71, 4.7, 2.66, 3.78]) Y…
1.最小二乘拟合 实例1 import numpy as np import matplotlib.pyplot as plt from scipy.optimize import leastsq plt.figure(figsize=(9,9)) x=np.linspace(0,10,1000) X = np.array([8.19, 2.72, 6.39, 8.71, 4.7, 2.66, 3.78]) Y = np.array([7.01, 2.78, 6.47, 6.71, 4.1, 4…
回归 一.实验说明 1. 环境登录 无需密码自动登录,系统用户名shiyanlou,密码shiyanlou 2. 环境介绍 本实验环境采用带桌面的Ubuntu Linux环境,实验中会用到程序: 1. LX终端(LXTerminal): Linux命令行终端,打开后会进入Bash环境,可以使用Linux命令2. GVim:非常好用的编辑器,最简单的用法可以参考课程Vim编辑器3. R:在命令行输入‘R’进入交互式环境,下面的代码都是在交互式环境运行. 3. 环境使用 使用R语言交互式环境输入实验…