Basic information Package name: vioplot Package homepage: https://cran.r-project.org/web/packages/vioplot/index.html Usage: https://cran.r-project.org/web/packages/vioplot/vioplot.pdf R code install.packages('sm') # dependency install.packages('viopl…
p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px "Helvetica Neue"; color: #323333 } p.p2 { margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px "Helvetica Neue"; color: #323333 } p.p3 { margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px "…
R语言data.table速查手册 介绍 R中的data.table包提供了一个data.frame的高级版本,让你的程序做数据整型的运算速度大大的增加.data.table已经在金融,基因工程学等领域大放光彩.他尤其适合那些需要处理大型数据集(比如 1GB 到100GB)需要在内存中处理数据的人.不过这个包的一些符号并不是很容易掌握,因为这些操作方式在R中比较少见.这也是这篇文章的目的,为了给大家提供一个速查的手册. data.table的通用格式: DT[i, j, by],对于数据集DT,…
R语言处理大规模数据速度不算快,通过安装其他包比如data.table可以提升读取处理速度. 案例,分别用read.csv和data.table包的fread函数读取一个1.67万行.230列的表格数据. # 用read.csv读取数据timestart<-Sys.time() data <- read.csv("XXXXs.csv",header = T,stringsAsFactors = F) timeend<-Sys.time() runningtime<…
Data Frame一般被翻译为数据框,感觉就像是R中的表,由行和列组成,与Matrix不同的是,每个列可以是不同的数据类型,而Matrix是必须相同的. Data Frame每一列有列名,每一行也可以指定行名.如果不指定行名,那么就是从1开始自增的Sequence来标识每一行. 初始化 使用data.frame函数就可以初始化一个Data Frame.比如我们要初始化一个student的Data Frame其中包含ID和Name还有Gender以及Birthdate,那么代码为: studen…
A data frame is used for storing data tables. It is a list of vectors of equal length. For example, the following variable df is a data frame containing three vectors n, s, b. > n = c(2, 3, 5) > s = c("aa", "bb", "cc") …
这个包让你可以更快地完成数据集的数据处理工作.放弃选取行或列子集的传统方法,用这个包进行数据处理.用最少的代码,你可以做最多的事.相比使用data.frame,data.table可以帮助你减少运算时间.一个数据表格包含三部分,即DT[i, j, by].你可以理解为我们告诉R用i来选出行的子集,并计算通过by来分组的j.大多数时候,by是用于类别变量的. 特点 data.table(DT)的操作语句类似于SQL,DT[i, j, by]中的i, j, by 对应着SQL语句的 i=where,…
Data Frame一般被翻译为数据框,感觉就像是R中的表,由行和列组成,与Matrix不同的是,每个列可以是不同的数据类型,而Matrix是必须相同的. Data Frame每一列有列名,每一行也可以指定行名.如果不指定行名,那么就是从1开始自增的Sequence来标识每一行. 初始化 使用data.frame函数就可以初始化一个Data Frame.比如我们要初始化一个student的Data Frame其中包含ID和Name还有Gender以及Birthdate,那么代码为: studen…
#鲍鱼数据集aburl <- 'http://archive.ics.uci.edu/ml/machine-learning-databases/abalone/abalone.data' abnames <- c('sex','length','diameter','height','weight.w','weight.s','weight.v','weight.sh','rings') abalone <- read.table(aburl, header = F , sep = '…
x<-data.frame(apple=c(1,4,2,3),pear=c(4,8,5,2)) x # apple pear # 1 1 4 # 2 4 8 # 3 2 5 # 4 3 2 x$banana<-c(9,5,6,2) x # apple pear banana # 1 1 4 9 # 2 4 8 5 # 3 2 5 6 # 4 3 2 2…