四个复杂度分析: 1:最好情况时间复杂度(best case time complexity) 2:最坏情况时间复杂度(worst case time complexity) 3:平均情况时间复杂度(average case time complexity) 4:均摊时间复杂度(amortized time complexity) for (; i < n; ++i) { if (array[i] == x) { pos = i; break; } } 分析:1:最好情况时间复杂度:O(1) 2…
上一节,我们讲了复杂度的大 O 表示法和几个分析技巧,还举了一些常见复杂度分析的例子,比如 O(1).O(logn).O(n).O(nlogn) 复杂度分析.掌握了这些内容,对于复杂度分析这个知识点,你已经可以到及格线了.但是,我想你肯定不会满足于此. 今天会继续给你讲四个复杂度分析方面的知识点,最好情况时间复杂度(best case time complexity).最坏情况时间复杂度(worst case time complexity).平均情况时间复杂度(average case tim…
关注公众号 MageByte,设置星标点「在看」是我们创造好文的动力.后台回复 "加群" 进入技术交流群获更多技术成长. 本文来自 MageByte-青叶编写 上次我们说过 时间复杂度与空间复度,列举了一些分析技巧以及一些常见的复杂度分析比如 O(1).O(logn).O(n).O(nlogn),今天会继续细化时间复杂度. 1. 最好情况时间复杂度(best case time complexity) 2.最坏情况时间复杂度(worst case time complexity) 3.…
.katex { display: block; text-align: center; white-space: nowrap; } .katex-display > .katex > .katex-html { display: block; } .katex-display > .katex > .katex-html > .tag { position: absolute; right: 0px; } .katex { font: 1.21em/1.2 KaTeX_M…
一.分类 1.内部排序和外部排序 内部排序:待排序记录存放在计算机随机存储器中(说简单点,就是内存)进行的排序过程. 外部排序:待排序记录的数量很大,以致于内存不能一次容纳全部记录,所以在排序过程中需要对外存进行访问的排序过程. 2.比较类排序和非比较排序 比较类排序:通过比较来决定元素间的相对次序,由于其时间复杂度不能突破O(nlogn),因此也称为非线性时间比较类排序. 非比较类排序:不通过比较来决定元素间的相对次序,它可以突破基于比较排序的时间下界,以线性时间运行,因此也称为线性时间非比较…
一.动图演示 二.思路分析 1.  相邻两个数两两相比,n[i]跟n[j+1]比,如果n[i]>n[j+1],则将连个数进行交换, 2.  j++, 重复以上步骤,第一趟结束后,最大数就会被确定在最后一位,这就是冒泡排序又称大(小)数沉底, 3.  i++,重复以上步骤,直到i=n-1结束,排序完成. 三.负杂度分析 1.  不管原始数组是否有序,时间复杂度都是O(n2), 因为没一个数都要与其他数比较一次,(n-1)2次,分解:n2+2n-1,  去掉低次幂和常数,剩下n2,所以最后的时间复杂…
一.动图演示 二.思路分析 1.  第一个跟后面的所有数相比,如果小于(或小于)第一个数的时候,暂存较小数的下标,第一趟结束后,将第一个数,与暂存的那个最小数进行交换,第一个数就是最小(或最大的数) 2.  下标移到第二位,第二个数跟后面的所有数相比,一趟下来,确定第二小(或第二大)的数 重复以上步骤 直到指针移到倒数第二位,确定倒数第二小(或倒数第二大)的数,那么最后一位也就确定了,排序完成. 三.负杂度分析 1.  不管原始数组是否有序,时间复杂度都是O(n2), 因为没一个数都要与其他数比…
一.动图演示 二.思路分析 先来了解下堆的相关概念:堆是具有以下性质的完全二叉树:每个结点的值都大于或等于其左右孩子结点的值,称为大顶堆:或者每个结点的值都小于或等于其左右孩子结点的值,称为小顶堆.如下图: 同时,我们对堆中的结点按层进行编号,将这种逻辑结构映射到数组中就是下面这个样子 该数组从逻辑上讲就是一个堆结构,我们用简单的公式来描述一下堆的定义就是: 大顶堆:arr[i] >= arr[2i+1] && arr[i] >= arr[2i+2]   小顶堆:arr[i]…
一.动图演示 二.思路分析 希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序:随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止. 简单插入排序很循规蹈矩,不管数组分布是怎么样的,依然一步一步的对元素进行比较,移动,插入,比如[5,4,3,2,1,0]这种倒序序列,数组末端的0要回到首位置很是费劲,比较和移动元素均需n-1次. 而希尔排序在数组中采用跳跃式分组的策略,通过某个增量将数组元素划分为若干组,然后分组进行插入排序,随后逐步缩…
一.动图演示 二.思路分析 快速排序的思想就是,选一个数作为基数(这里我选的是第一个数),大于这个基数的放到右边,小于这个基数的放到左边,等于这个基数的数可以放到左边或右边,看自己习惯,这里我是放到了左边, 一趟结束后,将基数放到中间分隔的位置,第二趟将数组从基数的位置分成两半,分割后的两个的数组继续重复以上步骤,选基数,将小数放在基数左边,将大数放到基数的右边,在分割数组,,,直到数组不能再分为止,排序结束. 例如从小到大排序: 1.  第一趟,第一个数为基数temp,设置两个指针left =…