AlexNet实践】的更多相关文章

注释: CNN使用TF搭建比较简单,就像Hough检测使用CV很简单一样.但是怎么使用CNN去做一些实际操作,或者说怎么使用现有的方法进行慢慢改进,这是一个很大的问题! 直接跟着书本或者视频学习有点膨胀,遇到问题又有点畏缩,现在进行每个网络的实际操作,注意不是mnist操作测试验证!那个东西说难听点就是玩的. AlexNet的特点 针对网络架构: 成功的使用ReLU作为激活函数,并验证其效果在较深的网络要优于Sigmoid. 使用LRN层,对局部神经元的活动创建竞争机制,使得其中响应比较大的值变…
参考黄文坚<TensorFlow实战>一书,完成AlexNet的整体实现并展望其训练和预测过程. import tensorflow as tf batch_size = 32 num_batches = 100 # 显示网络每一层结构,展示每一个卷积层或池化层输出tensor的尺寸,接受一个tensor作为输入 def print_activations(t): print(t.op.name, ' ', t.get_shape().as_list()) # 接受images作为输入,返回最…
上周我们用PaddlePaddle和Tensorflow实现了图像分类,分别用自己手写的一个简单的CNN网络simple_cnn和LeNet-5的CNN网络识别cifar-10数据集.在上周的实验表现中,经过200次迭代后的LeNet-5的准确率为60%左右,这个结果差强人意,毕竟是二十年前写的网络结构,结果简单,层数也很少,这一节中我们讲讲在2012年的Image比赛中大放异彩的AlexNet,并用AlexNet对cifar-10数据进行分类,对比上周的LeNet-5的效果. 什么是AlexN…
欢迎大家前往腾讯云社区,获取更多腾讯海量技术实践干货哦~ 作者介绍:高成才,腾讯Android开发工程师,2016.4月校招加入腾讯,主要负责企鹅电竞推流SDK.企鹅电竞APP的功能开发和技术优化工作.本文发表于QQ会员技术团队的专栏 本文主要是对CS231n课程学习笔记的提炼,添加了一些Deep Learning Book和Tensorflow 实战,以及Caffe框架的知识. 一.卷积神经网络 1.1 卷积神经网络与常规神经网络 1.1.1 相同点 卷积网络是一种专门用来处理具有类似网格结构…
上周我们用PaddlePaddle和Tensorflow实现了图像分类,分别用自己手写的一个简单的CNN网络simple_cnn和LeNet-5的CNN网络识别cifar-10数据集.在上周的实验表现中,经过200次迭代后的LeNet-5的准确率为60%左右,这个结果差强人意,毕竟是二十年前写的网络结构,结果简单,层数也很少,这一节中我们讲讲在2012年的Image比赛中大放异彩的AlexNet,并用AlexNet对cifar-10数据进行分类,对比上周的LeNet-5的效果. 什么是AlexN…
本文内容节选自由msup主办的第七届TOP100summit,北京一流科技有限公司首席科学家袁进辉(老师木)分享的<让AI简单且强大:深度学习引擎OneFlow背后的技术实践>实录. 北京一流科技有限公司将自动编排并行模式.静态调度.流式执行等创新性技术相融合,构建成一套自动支持数据并行.模型并行及流水并行等多种模式的分布式深度学习框架,降低了分布式训练门槛.极大的提高了硬件使用率.该框架已经成功帮助众多头部互联网公司及人工智能企业提升了大模型训练效率,节约了硬件运营和使用成本,达到了降本增效…
[原创 深度学习与TensorFlow 动手实践系列 - 4]第四课:卷积神经网络 - 高级篇 提纲: 1. AlexNet:现代神经网络起源 2. VGG:AlexNet增强版 3. GoogleNet:多维度识别 4. ResNet:机器超越人类识别 5. DeepFace:结构化图片的特殊处理 6. U-Net:图片生成网络 7. 实例:剖析VGG,用模型进行模型参数可视化,特征提取,目标预测 期待目标: 1. 掌握AlexNet结构特点,神经网络各层之间特征传导关系,模型参数总数计算 2…
预备知识 模型并行( model parallelism ):即把模型拆分放到不同的设备进行训练,分布式系统中的不同机器(GPU/CPU等)负责网络模型的不同部分 —— 例如,神经网络模型的不同网络层被分配到不同的机器,或者同一层内部的不同参数被分配到不同机器,如AlexNet的训练. 数据并行( data parallelism ):即把数据切分,输入到不同的机器有同一个模型的多个副本,每个机器分配到不同的数据,然后将所有机器的计算结果按照某种方式合并. 多进程最佳实践 torch.multi…
基于深度学习和迁移学习的识花实践(转)   深度学习是人工智能领域近年来最火热的话题之一,但是对于个人来说,以往想要玩转深度学习除了要具备高超的编程技巧,还需要有海量的数据和强劲的硬件.不过 TensorFlow 和 Keras 等框架的出现大大降低了编程的复杂度,而迁移学习的思想也允许我们利用现有的模型加上少量数据和训练时间,取得不俗的效果. 这篇文章将示范如何利用迁移学习训练一个能从图片中分类不同种类的花的模型,它在五种花中能达到 80% 以上的准确度(比瞎蒙高了 60% 哦),而且只需要普…
本文相对于摘抄的文章已经有大量的修改,如有阅读不适,请移步原文. 以下摘抄转自于维基:基于深度学习的图像识别进展百度的若干实践 从没有感知域(receptive field) 的深度神经网络,到固定感知域的卷积神经网络,再到可变感知域的递归神经网络,深度学习模型在各种图像识别问题中不断演进. 曾经爆炸式增长的参数规模逐步得到有效控制,人们将关于图像的先验知识逐渐用于深度学习,大规模并行化计算平台愈加成熟,这些使我们能够从容应对大数据条件下的图像识别问题. CNN的二维处理递进结构天然适合图像处理…