AI 线性代数】的更多相关文章

1.标量.向量.矩阵和张量 1)标量(scalar),一个数,例如自然数和实数. 2)向量(vector),一列有序数.可以看作只有一列的矩阵. 3)矩阵(matrix),二维数组.转置(transpose),关于主对角线(从左上角到右下角)对称. 4)张量(tensor),高维数组. 2.矩阵和向量相乘 1)矩阵乘法,(m x n)(n x p) = (m x p) 2)向量点积 3.单位矩阵和矩阵逆 1)单位矩阵(identity matrix),任意向量和单位矩阵相乘都不会变. 2)矩阵逆…
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/83 本文地址:http://www.showmeai.tech/article-detail/162 声明:版权所有,转载请联系平台与作者并注明出处 1.标量(Scalar) 一个标量就是一个单独的数.只具有数值大小,没有方向(部分有正负之分),运算遵循一般的代数法则. 一般用小写的变量名称表示. 质量\(m\).速率\(v\).时间\(t\).电阻\(\rho\) 等物理量,都是数…
眼下,人工智能已经成为越来越火的一个方向.普通程序员,如何转向人工智能方向,是知乎上的一个问题.本文是我对此问题的一个回答的归档版.相比原回答有所内容增加. 一. 目的 本文的目的是给出一个简单的,平滑的,易于实现的学习方法,帮助 "普通" 程序员踏入AI领域这个门.这里,我对普通程序员的定义是:拥有大学本科知识:平时工作较忙:自己能获取的数据有限.因此,本文更像是一篇 "from the scratch" 的AI入门教程. 二. AI领域简介 AI,也就是人工智能…
普通程序员如何转向AI方向   眼下,人工智能已经成为越来越火的一个方向.普通程序员,如何转向人工智能方向,是知乎上的一个问题.本文是我对此问题的一个回答的归档版.相比原回答有所内容增加. 一. 目的 本文的目的是给出一个简单的,平滑的,易于实现的学习方法,帮助 "普通" 程序员踏入AI领域这个门.这里,我对普通程序员的定义是:拥有大学本科知识:平时工作较忙:自己能获取的数据有限.因此,本文更像是一篇 "from the scratch" 的AI入门教程. 二. A…
转自 http://blog.csdn.net/han_xiaoyang/article/details/51629242 斯坦福大学CS224d基础1:线性代数知识 作者:Zico Kolter (补充: Chuong Do) 时间:2016年6月 翻译:@MOLLY(mollyecla@gmail.com) @OWEN(owenj1989@126.com) 校正:@寒小阳(hanxiaoyang.ml@gmail.com) @龙心尘(johnnygong.ml@gmail.com)  出处:…
普通程序员如何转向AI方向   眼下,人工智能已经成为越来越火的一个方向.普通程序员,如何转向人工智能方向,是知乎上的一个问题.本文是我对此问题的一个回答的归档版.相比原回答有所内容增加. 一. 目的 本文的目的是给出一个简单的,平滑的,易于实现的学习方法,帮助 “普通” 程序员踏入AI领域这个门.这里,我对普通程序员的定义是:拥有大学本科知识:平时工作较忙:自己能获取的数据有限.因此,本文更像是一篇 “from the scratch” 的AI入门教程. 二. AI领域简介 AI,也就是人工智…
[导读] 本文由知名开源平台,AI技术平台以及领域专家:Datawhale,ApacheCN,AI有道和黄海广博士联合整理贡献,内容涵盖AI入门基础知识.数据分析挖掘.机器学习.深度学习.强化学习.前沿Paper和五大AI理论应用领域:自然语言处理,计算机视觉,推荐系统,风控模型和知识图谱.是你学习AI从入门到专家必备的学习路线和优质学习资源. 基础知识 1.数学 数学是学不完的,也没有几个人能像博士一样扎实地学好数学基础,入门人工智能领域,其实只需要掌握必要的基础知识就好.AI的数学基础最主要…
目前,AI的研究和SLAM的发展已经走到使用领域.还记得三年前,上<信息光学>的老师在课上提到,他有一个研究生买了一个两万块的笔记本,还要出国去研究人工智能,当时听着认为这位学长很疯狂.可能那段时间,正是谷歌的机器与李世石的围棋大战正名噪一时的时候. 后来,自己也上了研究生,觉得矩阵理论很有用,之前一直觉得线性代数有一些问题,主要是实用性的问题没有答案,决心要选这门课.虽然最后的成绩很低,但矩阵理论中传达的精神和分析思路以及应用方法还是在脑子里留了一点印象,广义逆矩阵的核心观点深得我心,矩阵的…
前置知识   矩阵.求导 知识地图   学习一个新事物之前,先问两个问题,我在哪里?我要去哪里?这两个问题可以避免我们迷失在知识的海洋里,所以在开始之前先看看地图.   此前我们已经为了解线性回归做了一点准备工作,现在开始正式进入主题,总共需要迈过三个台阶.希望文章结束的时候,我们能轻松愉悦地摘下这颗星星. 从一个例子开始   假设我们是市场营销人员,现在有一些房屋历史销售数据,这些数据中包含了房屋的楼盘.均价.面积,以及对应的房屋销售情况.现在有一个新开楼盘,已知新开楼盘的主要信息,如何预测楼…
前置知识   无 知识地图 自学就像在海中游泳   当初为什么会想要了解机器学习呢,应该只是纯粹的好奇心吧.AI似乎无处不在,又无迹可循.为什么一个程序能在围棋的领域战胜人类,程序真的有那么聪明吗?如果掌握机器学习,就能创造属于自己的AI吗?   怀着这样的好奇心,开始了在机器学习领域的探索.学习的第一步是从<吴恩达机器学习>公开课开始的,不可否认对于一个初学者而言,这始终是最好的入门课程.   同样的知识也有不同的学法,比如一个公式摆在面前,浅一点的学法是直接把它背下来便于应用.深一点的学法…