Pollard-rho的质因数分解】的更多相关文章

题意:给出一个N,若N为素数,输出Prime.若为合数,输出最小的素因子.思路:Pollard rho大整数分解,模板题 #include <iostream> #include <stdio.h> #include <algorithm> #include <string.h> #include <cstdlib> #include <cmath> using namespace std; long long n; long lon…
\(\\\) Miller-Rabin 素性测试 考虑如何检验一个数字是否为素数. 经典的试除法复杂度 \(O(\sqrt N)\) 适用于询问 \(N\le 10^{16}\) 的时候. 如果我们要把询问范围加到 \(10^{18}\) ,再多组询问呢? Miller 和 Rabin 建立了Miller-Rabin 质数测试算法. \(\\\) Fermat 测试 首先我们知道费马小定理: \[ a^{p-1}\equiv 1\pmod p \] 当且仅当 \(p\) 为素数时成立. 逆命题是…
整数分解,又称质因子分解.在数学中,整数分解问题是指:给出一个正整数,将其写成几个素数的乘积的形式. (每个合数都可以写成几个质数相乘的形式,这几个质数就都叫做这个合数的质因数.) .试除法(适用于范围比较小) 无论素数判定还是因子分解,试除法(Trial Division)都是首先要进行的步骤.令m=n,从2~根n一一枚举,如果当前数能够整除m,那么当前数就是n的素数因子,并用整数m 将当前数除尽为止. 若循环结束后m是大于1的整数,那么此时m也是n的素数因子. 事例如HDU1164:15mm…
目录 问题 流程 代码 生日悖论 end 问题 给定n,要求对n质因数分解 普通的试除法已经不能应用于大整数了,我们需要更快的算法 流程 大概就是找出\(n=c*d\) 如果\(c\)是素数,结束,不是继续递归处理. 具体一点的话 1.先对n进行\(miller\_rabin\)测试,是素数就直接结束了 如果不会的话,看我前篇博客的介绍吧 为何还要多写个\(miller\_rabin\),他没有非平凡因子,他要保证复杂度? 2.随机基底a和c,生成序列\(x_{0}=a,x_{i}=x_{i-1…
链接:http://acm.hdu.edu.cn/showproblem.php? pid=3864 题意:给出一个数N(1<=N<10^18).假设N仅仅有四个约数.就输出除1外的三个约数. 思路:大数的质因数分解仅仅能用随机算法Miller Rabin和Pollard_rho.在測试多的情况下正确率是由保证的. 代码: #include <iostream> #include <cstdio> #include <cstring> #include &l…
#include <iostream> #include <cstring> #include <cstdlib> #include <stdio.h> #include <algorithm> #include <math.h> #include <stdlib.h> #include<time.h> #define ll long long #define INF 0x3f3f3f3f #define ma…
一.前言 质因数分解,是一个在算法竞赛里老生常谈的经典问题.我们在解决许多问题的时候需要用到质因数分解来辅助运算,而且质因数分解牵扯到许许多多经典高效的算法,例如miller-rabin判断素数算法,rho启发式搜索质因数分解算法等.在此文里,我要介绍的就是miller-rabin算法以及rho启发式搜索分解算法. 二.算术基本定理 首先,我们得知道,任意一个大于1的自然数都可以分解为有限个质数的乘积.这里因子均为质数,且为正整数.我们把这样的分解成为N的标准分解式.关于算数基本定理的应用有许多…
题意:给出a和b的gcd和lcm,让你求a和b.按升序输出a和b.若有多组满足条件的a和b,那么输出a+b最小的.思路:lcm=a*b/gcd   lcm/gcd=a/gcd*b/gcd 可知a/gcd与b/gcd互质,由此我们可以先用Pollard_rho法对lcm/gcd进行整数分解, 然后对其因子进行深搜找出符合条件的两个互质的因数,然后再都乘以gcd即为输出答案. #include <iostream> #include <stdio.h> #include <alg…
目录 Miller-Rabin质数测试 & Pollard-Rho质因数分解 Miller-Rabin质数测试 一些依赖的定理 实现以及正确率 Pollard-Rho质因数分解 生日悖论与生日攻击 主要思想 具体实现 Miller-Rabin质数测试 & Pollard-Rho质因数分解 考试遇见卡质因数分解的题了...活久见...毒瘤lun 于是就学了一发qaq Pollard-Rho分解质因数的话需要依赖另一个算法. Miller-Rabin质数测试 一个多项式时间的基于随机的质数测试…
前言 \(Pollard\ Rho\)是一个著名的大数质因数分解算法,它的实现基于一个神奇的算法:\(MillerRabin\)素数测试(关于\(MillerRabin\),可以参考这篇博客:初学MillerRabin素数测试). 期望下,\(Pollard\ Rho\)算法可以达到极快的复杂度. 核心思想 在\(ZJOI2019Day1\)讲课期间,它是被\(CQZ\)神仙作为随机算法内的一部分来进行介绍的. 由此可见,其核心思想便是随机二字. 操作流程 首先,我们先用\(MillerRabi…