Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor 2019-07-15 22:23:02 Paper: https://arxiv.org/pdf/1801.01290.pdf or Updated Version: https://arxiv.org/pdf/1812.05905.pdf Project: https://sites.google.c…
深度强化学习的18个关键问题 from: https://zhuanlan.zhihu.com/p/32153603 85 人赞了该文章 深度强化学习的问题在哪里?未来怎么走?哪些方面可以突破? 这两天我阅读了两篇篇猛文A Brief Survey of Deep Reinforcement Learning 和 Deep Reinforcement Learning: An Overview ,作者排山倒海的引用了200多篇文献,阐述强化学习未来的方向.原文归纳出深度强化学习中的常见科学问题,…
Deep Reinforcement Learning Papers A list of recent papers regarding deep reinforcement learning. The papers are organized based on manually-defined bookmarks. They are sorted by time to see the recent papers first. Any suggestions and pull requests…
Andrej Karpathy blog About Hacker's guide to Neural Networks Deep Reinforcement Learning: Pong from Pixels May 31, 2016 This is a long overdue blog post on Reinforcement Learning (RL). RL is hot! You may have noticed that computers can now automatica…
Asynchronous Methods for Deep Reinforcement Learning ICML 2016 深度强化学习最近被人发现貌似不太稳定,有人提出很多改善的方法,这些方法有很多共同的 idea:一个 online 的 agent 碰到的观察到的数据序列是非静态的,然后就是,online的 RL 更新是强烈相关的.通过将 agent 的数据存储在一个 experience replay 单元中,数据可以从不同的时间步骤上,批处理或者随机采样.这种方法可以降低 non-st…
RL的方案 两个主要对象:Agent和Environment Agent观察Environment,做出Action,这个Action会对Environment造成一定影响和改变,继而Agent会从新的环境中获得Reward.循环上述步骤. 举例: 机器人把水杯打翻了,人类说“不能这么做”,机器人获得人类的这个负向反馈,然后机器人观察到水杯打翻的状态,采取了拖地的行为,获得了人类的“谢谢”的正向反馈. Agent学习的目标就是使得期望的回报(reward)最大化. 注意:State(observ…
转自https://zhuanlan.zhihu.com/p/25239682 过去的一段时间在深度强化学习领域投入了不少精力,工作中也在应用DRL解决业务问题.子曰:温故而知新,在进一步深入研究和应用DRL前,阶段性的整理下相关知识点.本文集中在DRL的model-free方法的Value-based和Policy-base方法,详细介绍下RL的基本概念和Value-based DQN,Policy-based DDPG两个主要算法,对目前state-of-art的算法(A3C)详细介绍,其他…
Byte Tank Posts Archive Deep Reinforcement Learning: Playing a Racing Game OCT 6TH, 2016 Agent playing Out Run, session 201609171218_175epsNo time limit, no traffic, 2X time lapse Above is the built deep Q-network (DQN) agent playing Out Run, trained…
Deep Reinforcement Learning with Iterative Shift for Visual Tracking 2019-07-30 14:55:31 Paper: http://openaccess.thecvf.com/content_ECCV_2018/papers/Liangliang_Ren_Deep_Reinforcement_Learning_ECCV_2018_paper.pdf Code: not find yet. Paper List of Tra…
Dueling Network Architectures for Deep Reinforcement Learning ICML 2016 Best Paper 摘要:本文的贡献点主要是在 DQN 网络结构上,将卷积神经网络提出的特征,分为两路走,即:the state value function 和 the state-dependent action advantage function. 这个设计的主要特色在于 generalize learning across actions w…