Dirichlet 卷积学习笔记】的更多相关文章

Dirichlet 卷积学习笔记 数论函数:数论函数亦称算术函数,一类重要的函数,指定义在正整数集上的实值或复值函数,更一般地,也可把数论函数看做是某一整数集上定义的函数. 然而百科在说什么鬼知道呢,感性理解一下,数论函数的定义域是正整数,值域也是正整数. 数论函数的相关运算与性质 设有数论函数\(\bf{h,f,g}\). 加法运算 \((\mathbf {f}+\mathbf {g})(n)=\mathbf {f}(n)+\mathbf {g}(n)\) 即每项相加 数乘运算 \((x\ma…
以下内容主要基于<Latent Dirichlet Allocation>,JMLR-2003一文,另加入了一些自己的理解,刚开始了解,有不对的还请各位指正. LDA-Latent Dirichlet Allocation JMLR-2003 摘要:本文讨论的LDA是对于离散数据集,如文本集,的一种生成式概率模型.LDA是一个三层的贝叶斯分层模型,将数据集中每一项,如每个文本,建模为某些未知的topic组成的集合的混合.每个topic又建模为某种混合概率分布.在文本建模中,话题的概率就提供了每…
前言:这只是我的一个学习笔记,里边肯定有不少错误,还希望有大神能帮帮找找,由于是从小白的视角来看问题的,所以对于初学者或多或少会有点帮助吧. 1:人工全连接神经网络和BP算法 <1>:人工神经网络结构与人工神经网络可以完美分割任意数据的原理: 本节图片来源于斯坦福Andrew Ng老师coursea课件(此大神不多介绍,大家都懂) 在说明神经网络之前,先介绍一下神经网络的基础计算单元,感知器. 上图就是一个简单的感知器,蓝色是输入的样本,g(z)是激活函数,z=x1*w1+-,a=g(z) 这…
ufldl学习笔记与编程作业:Feature Extraction Using Convolution,Pooling(卷积和池化抽取特征) ufldl出了新教程,感觉比之前的好,从基础讲起.系统清晰.又有编程实践. 在deep learning高质量群里面听一些前辈说.不必深究其它机器学习的算法.能够直接来学dl. 于是近期就開始搞这个了.教程加上matlab编程,就是完美啊. 新教程的地址是:http://ufldl.stanford.edu/tutorial/ 学习链接: http://u…
卷积神经网络(CNN)学习笔记1:基础入门 Posted on 2016-03-01   |   In Machine Learning  |   9 Comments  |   14935  Views 概述 卷积神经网络(Convolutional Neural Network, CNN)是深度学习技术中极具代表的网络结构之一,在图像处理领域取得了很大的成功,在国际标准的ImageNet数据集上,许多成功的模型都是基于CNN的.CNN相较于传统的图像处理算法的优点之一在于,避免了对图像复杂的…
一.卷积 卷积神经网络(Convolutional Neural Networks)是一种在空间上共享参数的神经网络.使用数层卷积,而不是数层的矩阵相乘.在图像的处理过程中,每一张图片都可以看成一张“薄饼”,其中包括了图片的高度.宽度和深度(即颜色,用RGB表示). 在不改变权重的情况下,把这个上方具有k个输出的小神经网络对应的小块滑遍整个图像,可以得到一个宽度.高度不同,而且深度也不同的新图像. 卷积时有很多种填充图像的方法,以下主要介绍两种,一种是相同填充,一种是有效填充. 如图中紫色方框所…
CNN学习笔记:卷积神经网络 卷积神经网络 基本结构 卷积神经网络是一种层次模型,其输入是原始数据,如RGB图像.音频等.卷积神经网络通过卷积(convolution)操作.汇合(pooling)操作和非线性激活函数的映射等一系列操作的层层堆叠,将高层语义信息逐层由原始信息中抽取出来,逐层抽象. 将信息逐渐抽象出来的过程称为前馈运算(Feed-Forward).通过计算预测值与真实值之间的误差和损失,凭借反向传播算法(Back-Propagation algorithm)将误差或损失由最后一层逐…
CNN学习笔记:卷积运算 边缘检测 卷积 卷积是一种有效提取图片特征的方法.一般用一个正方形卷积核,遍历图片上的每一个像素点.图片与卷积核重合区域内相对应的每一个像素值乘卷积核 .内相对应点的权重,然后求和,再加上偏置后,最后得到输出图片中的一个像素值. 卷积操作的作用 卷积是一种局部操作,通过一定大小的卷积核作用于局部图像区域获得图像的局部信息. 我们现在使用三种边缘卷积核(亦称滤波器),整体边缘滤波器.横向边缘滤波器和纵向边缘滤波器. 试想,若原图像素(x, y)处可能存在物体边缘,则其四周…
UFLDL深度学习笔记 (六)卷积神经网络 1. 主要思路 "UFLDL 卷积神经网络"主要讲解了对大尺寸图像应用前面所讨论神经网络学习的方法,其中的变化有两条,第一,对大尺寸图像的每个小的patch矩阵应用相同的权值来计算隐藏层特征,称为卷积特征提取:第二,对计算出来的特征矩阵做"减法",把特征矩阵纵横等分为多个区域,取每个区域的平均值(或最大值)作为输出特征,称为池化.这样做的原因主要是为了降低数据规模,对于8X8的图像输入层有64个单元,而100X100的图像…
读了一篇文章,用到卷积神经网络的方法来进行文本分类,故写下一点自己的学习笔记: 本文在事先进行单词向量的学习的基础上,利用卷积神经网络(CNN)进行句子分类,然后通过微调学习任务特定的向量,提高性能. 在从无监督神经语言模型中获得单词向量(Tomas Mikolov等人做过相关工作,即谷歌的word2vector完成,将原始的1/V模型变化为分布式低维表示)后利用一层卷积层的CNN进行学习. 模型结构: 首先输入具有两个通道,分别对应static和non-static的方式,其中static方式…
无论是之前学习的MNIST数据集还是Cifar数据集,相比真实环境下的图像识别问题,有两个最大的问题,一是现实生活中的图片分辨率要远高于32*32,而且图像的分辨率也不会是固定的.二是现实生活中的物体类别很多,无论是10种还是100种都远远不够,而且一张图片中不会只出现一个种类的物体.为了更加贴近真实环境下的图像识别问题,由李飞飞教授带头整理的ImageNet很大程度上解决了这个问题. ImageNet是一个基于WordNet的大型图像数据库,在ImageNet中,将近1500万图片被关联到了W…
在cips2016出来之前,笔者也总结过种类繁多,类似词向量的内容,自然语言处理︱简述四大类文本分析中的"词向量"(文本词特征提取)事实证明,笔者当时所写的基本跟CIPS2016一章中总结的类似,当然由于入门较晚没有CIPS2016里面说法权威,于是把CIPS2016中的内容,做一个摘录. CIPS2016 中文信息处理报告<第五章 语言表示与深度学习研究进展.现状及趋势>第三节 技术方法和研究现状中有一些关于语言表示模型划分的内容P33-P35,其中: 语言表示方法大体上…
初等数论学习笔记 I:同余相关. 初等数论学习笔记 II:分解质因数. 1. 数论函数 本篇笔记所有内容均与数论函数相关.因此充分了解各种数论函数的名称,定义,符号和性质是必要的. 1.1 相关定义 数论函数:定义域为正整数的函数称为 数论函数.因其在所有正整数处均有定义,故可视作数列.OI 中常见的数论函数的陪域(即可能的取值范围)为整数. 加性函数:若对于任意 \(a, b\in \mathbb{N}_+\) 且 \(a\perp b\) 均有 \(f(ab) = f(a) + f(b)\)…
Deep Learning(深度学习)学习笔记整理系列 zouxy09@qq.com http://blog.csdn.net/zouxy09 作者:Zouxy version 1.0 2013-04-08 声明: 1)该Deep Learning的学习系列是整理自网上非常大牛和机器学习专家所无私奉献的资料的.详细引用的资料请看參考文献.详细的版本号声明也參考原文献. 2)本文仅供学术交流,非商用.所以每一部分详细的參考资料并没有详细相应.假设某部分不小心侵犯了大家的利益,还望海涵,并联系博主删…
Google Deep Learning Notes Google 深度学习笔记 由于谷歌机器学习教程更新太慢,所以一边学习Deep Learning教程,经常总结是个好习惯,笔记目录奉上. Github工程地址:https://github.com/ahangchen/GDLnotes 欢迎star,有问题可以到Issue区讨论 官方教程地址 视频/字幕下载 最近tensorflow团队出了一个model项目,和这个课程无关,但是可以参考 框架: TensorFlow 谷歌出品的基于Pytho…
Deep Learning(深度学习)学习笔记整理系列 zouxy09@qq.com http://blog.csdn.net/zouxy09 作者:Zouxy version 1.0 2013-04-08 声明: 1)该Deep Learning的学习系列是整理自网上很大牛和机器学习专家所无私奉献的资料的.具体引用的资料请看参考文献.具体的版本声明也参考原文献. 2)本文仅供学术交流,非商用.所以每一部分具体的参考资料并没有详细对应.如果某部分不小心侵犯了大家的利益,还望海涵,并联系博主删除.…
Deep Learning(深度学习)学习笔记整理系列 zouxy09@qq.com http://blog.csdn.net/zouxy09 作者:Zouxy version 1.0 2013-04-08 声明: 1)该Deep Learning的学习系列是整理自网上很大牛和机器学习专家所无私奉献的资料的.具体引用的资料请看参考文献.具体的版本声明也参考原文献. 2)本文仅供学术交流,非商用.所以每一部分具体的参考资料并没有详细对应.如果某部分不小心侵犯了大家的利益,还望海涵,并联系博主删除.…
Deep Learning(深度学习)学习笔记整理系列 zouxy09@qq.com http://blog.csdn.net/zouxy09 作者:Zouxy version 1.0 2013-04-08 声明: 1)该Deep Learning的学习系列是整理自网上很大牛和机器学习专家所无私奉献的资料的.具体引用的资料请看参考文献.具体的版本声明也参考原文献. 2)本文仅供学术交流,非商用.所以每一部分具体的参考资料并没有详细对应.如果某部分不小心侵犯了大家的利益,还望海涵,并联系博主删除.…
Deep Learning(深度学习)学习笔记整理系列 zouxy09@qq.com http://blog.csdn.net/zouxy09 作者:Zouxy version 1.0 2013-04-08 声明: 1)该Deep Learning的学习系列是整理自网上很大牛和机器学习专家所无私奉献的资料的.具体引用的资料请看参考文献.具体的版本声明也参考原文献. 2)本文仅供学术交流,非商用.所以每一部分具体的参考资料并没有详细对应.如果某部分不小心侵犯了大家的利益,还望海涵,并联系博主删除.…
Deep Learning(深度学习)学习笔记整理系列 zouxy09@qq.com http://blog.csdn.net/zouxy09 作者:Zouxy version 1.0 2013-04-08 声明: 1)该Deep Learning的学习系列是整理自网上很大牛和机器学习专家所无私奉献的资料的.具体引用的资料请看参考文献.具体的版本声明也参考原文献. 2)本文仅供学术交流,非商用.所以每一部分具体的参考资料并没有详细对应.如果某部分不小心侵犯了大家的利益,还望海涵,并联系博主删除.…
Deep Learning(深度学习)学习笔记整理系列 zouxy09@qq.com http://blog.csdn.net/zouxy09 作者:Zouxy version 1.0 2013-04-08 声明: 1)该Deep Learning的学习系列是整理自网上很大牛和机器学习专家所无私奉献的资料的.具体引用的资料请看参考文献.具体的版本声明也参考原文献. 2)本文仅供学术交流,非商用.所以每一部分具体的参考资料并没有详细对应.如果某部分不小心侵犯了大家的利益,还望海涵,并联系博主删除.…
Deep Learning(深度学习)学习笔记整理系列 zouxy09@qq.com http://blog.csdn.net/zouxy09 作者:Zouxy version 1.0  2013-04-08   声明: 1)该Deep Learning的学习系列是整理自网上很大牛和机器学习专家所无私奉献的资料的.具体引用的资料请看参考文献.具体的版本声明也参考原文献. 2)本文仅供学术交流,非商用.所以每一部分具体的参考资料并没有详细对应.如果某部分不小心侵犯了大家的利益,还望海涵,并联系博主…
Deep Learning(深度学习)学习笔记整理系列 zouxy09@qq.com http://blog.csdn.net/zouxy09 作者:Zouxy version 1.0 2013-04-08 声明: 1)该Deep Learning的学习系列是整理自网上非常大牛和机器学习专家所无私奉献的资料的.详细引用的资料请看參考文献.详细的版本号声明也參考原文献. 2)本文仅供学术交流,非商用.所以每一部分详细的參考资料并没有详细相应.假设某部分不小心侵犯了大家的利益,还望海涵,并联系博主删…
引入 可能有不少OIer都知道FFT这个神奇的算法, 通过一系列玄学的变化就可以在 $O(nlog(n))$ 的总时间复杂度内计算出两个向量的卷积, 而代码量却非常小. 博主一年半前曾经因COGS的一道叫做"神秘的常数 $\pi$"的题目而去学习过FFT, 但是基本就是照着板子打打完并不知道自己在写些什么鬼畜的东西OwO 不过...博主这几天突然照着算法导论自己看了一遍发现自己似乎突然意识到了什么OwO然后就打了一道板子题还1A了OwO再加上午考试差点AK以及日更频率即将不保于是就有了…
1.说明 本文对LDA原始论文的作者所提供的C代码中LDA的主要逻辑部分做凝视,原代码可在这里下载到:https://github.com/Blei-Lab/lda-c 这份代码实现论文<Latent Dirichlet Allocation>中介绍的LDA模型.用变分EM算法求解參数. 为了使代码在vs2013中执行.做了一些微小修改,但不影响原代码的逻辑. vs2013project可在我的资源中下载: http://download.csdn.net/detail/happyer88/8…
简单积性函数 在学习欧拉函数的时候,相信读者对积性函数的概念已经有了一定的了解.接下来,我们将相信介绍几种简单的积性函数,以备\(dirichlet\)卷积的运用. 定义 数论函数:在数论上,对于定义域为正整数,值域为复数的函数,我们称之为数论函数. 积性函数:对于数论函数\(f\),若满足\(gcd(a,b)=1\)时,有\(f(ab)=f(a)f(b)\),则称函数\(f\)为积性函数 简单积性函数 约数个数函数 \[\tau(n)=\sum_{k|n}1\] 约数和函数 \[\sigma(…
一. 算法概述 本文提出的SSD算法是一种直接预测目标类别和bounding box的多目标检测算法.与faster rcnn相比,该算法没有生成 proposal 的过程,这就极大提高了检测速度.针对不同大小的目标检测,传统的做法是先将图像转换成不同大小(图像金字塔),然后分别检测,最后将结果综合起来(NMS).而SSD算法则利用不同卷积层的 个).最后将前面三个计算结果分别合并然后传给loss层. 二. Default box 文章的核心之一是作者同时采用lower和upper的featur…
FWT快速沃尔什变换学习笔记 1.FWT用来干啥啊 回忆一下多项式的卷积\(C_k=\sum_{i+j=k}A_i*B_j\) 我们可以用\(FFT\)来做. 甚至在一些特殊情况下,我们\(C_k=\sum_{i*j=k}A_i*B_j\)也能做(SDOI2015 序列统计). 但是,如果我们把操作符换一下呢? 比如这样? \(C_k=\sum_{i|j=k}A_i*B_j\) \(C_k=\sum_{i\&j=k}A_i*B_j\) \(C_k=\sum_{i\wedge j=k}A_i*B_…
总结 机器学习(machine learning)是人工智能的一个特殊子领域,其目标是仅靠观察训练数据来自动开发程序[即模型(model)].将数据转换为程序的这个过程叫作学习(learning) 深度学习(deep learning)是机器学习的众多分支之一,它的模型是一长串几何函数,一个接一个地作用在数据上.这些运算被组织成模块,叫作层(layer).深度学习模型通常都是层的堆叠,或者更通俗地说,是层组成的图.这些层由权重(weight)来参数化,权重是在训练过程中需要学习的参数.模型的知识…
解决涉及子集配凑的卷积问题 一.介绍 1.基本用法 FWT快速沃尔什变换学习笔记 就是解决一类问题: $f[k]=\sum_{i\oplus j=k}a[i]*b[j]$ 基本思想和FFT类似. 首先转化成为另一个多项式$FWT(A),FWT(B)$ 使得:$FWT(A\oplus B)=FWT(A)×FWT(B)$ 这里,$×$是按位乘.这个是$O(n)$的. 然后,再$IFWT$回去即可. 类似于,直接过马路不好走.先从左边走上一座天桥,再从天桥走过去,再到马路右侧走下天桥. 就变成了$O(…